Name:

Student Number: _____

Answer all questions and show all your work. No calculators allowed. (Total Marks: 38). You have 20 minutes to complete the quiz.

- 1. Let $\mathbf{v} = (1, 2, 4)$, $\mathbf{e} = (3, 2, 1)$, $\mathbf{u} = (3, 2, 4)$. Calculate each of the following:
- [5] (a) $\operatorname{proj}_{\mathbf{e}} \mathbf{v}$

[5] (b) $\mathbf{v} \times \mathbf{u}$

[5] (c) The area of the parallelogram determined by \mathbf{u} and \mathbf{v}

[5] 2. Find all $k \in \mathbb{R}$ such that (-1, -2, k, -4) is orthogonal to (-2, 5, k, 2).

3. Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be vectors in \mathbb{R}^3 . Which of the following expressions make sense? If they don't, explain why.

[2] (a) $\mathbf{u} \bullet (\mathbf{v} + \mathbf{w})$

- $[2] \qquad (b) ||\mathbf{v} \bullet \mathbf{u}||$
- [2] (c) $(\mathbf{u} \bullet \mathbf{v}) + \mathbf{u}$
- [2] (d) $(\mathbf{u} \bullet \mathbf{v}) \times \mathbf{w}$
- [2] (e) $(\mathbf{u} \times \mathbf{v}) \times \mathbf{w}$
- [8] 4. Let $\mathbf{u} = (a, b, c)$, $\mathbf{v} = (d, e, f)$. Prove that $\mathbf{u} \times \mathbf{v}$ is orthogonal to \mathbf{v} .