
2.2. Limits of Functions

We now start the real content of the course.

A limit is a tool for describing how (real-valued) functions behave
close to a point.

We write
lim
x→a

f (x) = L

and say

“the limit of f (x), as x approaches a, equals L”,

if the values of f (x) can be made as close as we like to L by taking
x to be sufficiently close to a (on either side of a) but not equal
to a.

A limit involves what is going on around a point, and does not
care what happens at it.



We will talk more soon about how to calculate the limits exactly.
Guessing is never the way to go in practice, but if you work through
the guessing examples in the book, you may have a better idea of
what is going on and how limits work.



One-sided Limits

Write
lim
x→a−

f (x) = L

and say that the left-hand limit of f (x) as x approaches
a is equal to L if we can make the values of f (x) arbitrarily close
to L by taking x to be sufficiently close to a and x less than a.

Write
lim
x→a+

f (x) = L

and say that the right-hand limit of f (x) as x approaches
a is equal to L if we can make the values of f (x) arbitrarily close
to L by taking x to be sufficiently close to a and x greater than a.

So,
lim
x→0−

H(x) = 0



and
lim
x→0+

H(x) = 1.



For any function f and any a, the general limit limx→a f (x) exists
and equals L if and only if both the left-hand the right-hand limits
exist, and

lim
x→a−

f (x) = lim
x→a+

f (x) = L.



Infinite Limits

In general, and formally, let f be a function defined on both sides
of a, except possibly at a itself. Then

lim
x→a

f (x) = ∞

means that the values of f (x) can be made arbitrarily large by
taking x sufficiently close to a but not equal to a.



Similarly,
lim
x→a

f (x) = −∞
means that the values of f (x) can be made arbitrarily large neg-
ative by taking x sufficiently close to a but not equal to a.

Similar and natural definitions can be made for one sided limits
as well:

lim
x→a−

f (x) = ∞ lim
x→a+

f (x) = ∞

lim
x→a−

f (x) = −∞ lim
x→a+

f (x) = −∞



2.3. The Limit Laws

Suppose c is a constant and the limits limx→a f (x) and limx→a g(x)
exist. Then,

◦ lim
x→a

[f (x) + g(x)] = lim
x→a

f (x) + lim
x→a

g(x)

◦ lim
x→a

[f (x)− g(x)] = lim
x→a

f (x)− lim
x→a

g(x)

◦ lim
x→a

[cf (x)] = c lim
x→a

f (x)

◦ lim
x→a

[f (x)g(x)] = lim
x→a

f (x) lim
x→a

g(x)

◦ lim
x→a

f (x)

g(x)
=

limx→a f (x)

limx→a g(x)
(if limx→a g(x) ̸= 0).

◦ lim
x→a

[f (x)]n = [lim
x→a

f (x)]n



Theorem. If f is a polynomial or a rational function and a is in
the domain of f , then

lim
x→a

f (x) = f (a).

This now allows us to actually find the limit of many functions.



Theorem. If f (x) ≤ g(x) when x is near a (except possibly at
a) and the limits of f and g both exist as x approaches a, then

lim
x→a

f (x) ≤ lim
x→a

g(x).

The Squeeze Theorem. If f (x) ≤ g(x) ≤ h(x) when x is
near a (except possibly at a), and

lim
x→a

f (x) = lim
x→a

h(x) = L,

then
lim
x→a

g(x) = L.



2.5. Continuity

The idea of continuity is basic: a function is continuous if it’s graph
can be drawn without lifting your pencil off the paper. However
we now formalize this:

A function f is said to be continuous at a number a if

lim
x→a

f (x) = f (a).

Notice that three things are implied by this definition for a function
f to be continuous at a:

1. f (a) is defined, that is, a is in the domain of f

2. limx→a f (x) exists

3. limx→a f (x) = f (a).

If a function is not continuous at a, we say it is discontinuous
at a, or f has a discontinuity at a.



If a function is discontinuous, there are a number of special ways
it can be discontinuous.



A function f is continuous from the right at a number a
if

lim
x→a+

f (x) = f (a),

and f is continuous from the left at a if

lim
x→a−

f (x) = f (a).

A function is continuous on an interval if it is continuous
at every number in the interval (if f is defined only on one side
of an endpoint of the interval, we understand continuous at the
endpoint to mean continuous from the right or continuous from
the left, as appropriate).



Theorem. If f and g are continuous at a and c is a constant,
then the following functions are also continuous at a:

◦ f + g

◦ f − g

◦ cf
◦ fg
◦ f

g (if g(a) ̸= 0).



Theorem. Every polynomial is continuous everywhere, that is,
on the whole real line.

Theorem. Every rational function is continuous at every point
in it’s domain.



Theorem. The following types of functions are continuous at
every number in their domains:

◦ Polynomials

◦Rational functions
◦Root functions
◦ Trigonometric functions

◦ Inverse Trigonometric functions

◦ Exponential functions
◦ Logarithmic functions



Theorem. If g is continuous at a and f is continuous at g(a),
then the composition f ◦ g given by (f ◦ g)(x) = f (g(x)) is con-
tinuous at a.



Theorem. (Intermediate Value Theorem) Suppose that
f is continuous on the closed interval [a, b] and let N be any
number between f (a) and f (b) where f (a) ̸= f (b). Then there
exists a number c in (a, b) such that f (c) = N .



2.6. Limits at Infinity: Horizontal Asymptotes

Let f be a function defined on some interval (a,∞). Then

lim
x→∞

f (x) = L

means that the values of f (x) can be made arbitrarily close to L
by taking x to be sufficiently large.

Similarly,
lim

x→−∞
f (x) = L

means that the values of f (x) can be made arbitrarily close to L
by taking x sufficiently large negative.

The line y = L is called a horizontal asymptote of the curve
y = f (x) if either

lim
x→∞

f (x) = L or lim
x→−∞

f (x) = L.



Theorem. If r > 0 is a rational number, then

lim
x→∞

1

xr
= 0.

If r > 0 is any rational number such that xr is defined for all x,
then

lim
x→−∞

1

xr
= 0.

Consequence. For any r ∈ Z+,

lim
x→∞

1

xr
= lim

x→−∞

1

xr
= 0.



Infinite limits at infinity

The notation
lim
x→∞

f (x) = ∞
means that the values of f (x) become large as x becomes large.
Similarly, we define the other notations:

lim
x→∞

f (x) = −∞ lim
x→−∞

f (x) = ∞ lim
x→−∞

f (x) = −∞



2.7. Derivatives and Rates of Change

The major purpose of limits in this course is to be able to talk
about instantaneous rates of change.

Given any two points, one can easily determine the average rate
of change between them:



Fix a function f (x), and a point P = (a, f (a)) on the curve.
Then we can find the rate of change from P to any other point
Q = (x, f (x)) by the formula:

mPQ =
f (x)− f (a)

x− a
.

Now we want to let Q approach P . The rate of change will ap-
proach closer and closer to the rate of the change of the tangent
at P . The tangent line to the curve y = f (x) at the point
P (a, f (a)) is the line through P with slope

m = lim
x→a

f (x)− f (a)

x− a
.



There is another version that is sometimes easier to use. Let

h = x− a.

Then
x = a + h,

so the same formula above becomes

mPQ =
f (x)− f (a)

x− a

=
f (a + h)− f (a)

a + h− a

=
f (a + h)− f (a)

h

Now, we can rewrite the slope of the tangent line as

m = lim
x→a

f (x)− f (a)

x− a
= lim

h→0

f (a + h)− f (a)

h
.



Derivatives.

The derivative of a function f at a number a, denoted
f ′(a), is

f ′(a) = lim
h→0

f (a + h)− f (a)

h
if this limit exists.

The derivative is also known as the instantaneous rate of change
with respect to x.



2.8. The derivative as a function.

In the last section, we considered the derivative of a function f at
a fixed number a:

f ′(a) = lim
h→0

f (a + h)− f (a)

h
.

Here we change our point of view and let the number a vary. If
we replace a in the above equation by a variable x, we get

f ′(x) = lim
h→0

f (x + h)− f (x)

h
.

For each x for which this limit exists, define the function that
maps x to this number f ′(x). Then f ′ is a new function, called
the derivative of f .



A function f is called differentiable at a if f ′(a) exists. It is
differentiable on the open interval (a, b) [or (a,∞), or (−∞, a),
or (−∞,∞)] if it is differentiable at every number in the interval.



Theorem. If f is differentiable at a, then f is continuous at a.

Proof. To show that f is continuous at a, it must be shown that

lim
x→a

f (x) = f (a).

Since f is differentiable at a,

f ′(a) = lim
h→0

f (a + h)− f (a)

h
= lim

x→a

f (x)− f (a)

x− a
exists. So,

lim
x→a

f (x) = lim
x→a

(f (a) + f (x)− f (a)) (add/sub f (a)),

= lim
x→a

f (a) + lim
x→a

(f (x)− f (a))

= f (a) + lim
x→a

f (x)− f (a)

x− a
(x− a) (mult/div by x− a),

= f (a) + lim
x→a

f (x)− f (a)

x− a
lim
x→a

(x− a)

= f (a) + f ′(a)× 0,



= f (a).

Therefore f is continuous at a.



Note the converse of this theorem is not true. We showed a few
slides ago that f (x) = |x| is not differentiable at 0, but

lim
x→0

|x| = 0 = f (0)

and therefore |x| is continuous at 0.
Make sure you know the direction this theorem goes.



Question: How can a function look if it is not differentiable?


