
Applications of Differentiation

Definitions. A function f has an absolute maximum (or
global maximum) at c if for all x in the domainD of f , f (c) ≥
f (x). The number f (c) is called the maximum value of f on
D.

Similarly, f has an absolute minimum (or global mini-
mum) at c if for all x in D, f (c) ≤ f (x), and the number f (c)
is called the minimum value of f on D.

The maximum and minimum values of f are called the extreme
values of f .



Definitions. A function f has an local maximum (or rela-
tive maximum) at c if when x is near c, (that is, x is in some
open interval containing c), f (c) ≥ f(x).

Similarly, f has an local minimum (or relative minimum)
at c if when x is near c, f (c) ≤ f (x).



The Extreme Value Theorem. If f is continuous on a closed
interval [a, b], then f attains an absolute maximum value f (c) and
an absolute minimum value f (d) at some numbers c and d in [a, b].

Fermat’s Theorem. If f has a local maximum or minimum at
c, and if f ′(c) exists, then f ′(c) = 0.



Definition. A critical number of a function f is a number
c in the domain of f such that either f ′(c) = 0 or f ′(c) does not
exist.

◦ If f has a local maximum or minimum at c, then c is a critical
number of f .

◦ But a critical number might not be a local minimum or a local
maximum.



Finding Absolute Min’s and Max’s

The Closed Interval Method. To find the absolute maxi-
mum and minimum values of a continuous function f on a closed
interval [a, b]:

1. Find the values of f at the critical numbers of f in (a, b).

2. Find the values of f at the endpoints of the interval.

3. The largest of the values from Steps 1 and 2 is the absolute
max, and the smallest is the absolute min.



The Mean Value Theorem.

A precursor to the Mean Value Theorem is Rolle’s theorem. Rolle’s
theorem can be viewed as a special case of the Mean Value the-
orem, but it is actually used to prove the Mean Value Theorem,
and so it is presented first.

Rolle’s Theorem. Let f be a function that satisfies the follow-
ing three hypotheses:

◦ f is continuous on the closed interval [a, b].

◦ f is differentiable on the open interval (a, b).

◦ f (a) = f (b).

Then there is a number c in (a, b) such that f ′(c) = 0.



The Mean Value Theorem. Let f be a function that satisfies
the following hypotheses:

◦ f is continuous on the closed interval [a, b].

◦ f is differentiable on the open interval (a, b).

Then there is a number c in (a, b) such that

f ′(c) =
f (b)− f (a)

b− a
.

The Mean Value Theorem allows us to prove a number of theorems
regarding how the derivative of a function affects the shape of its
graph.



How Derivatives Affect the Shape of a Graph

Theorem. If f ′(x) = 0 for all x in an interval (a, b), then f is
constant on (a, b).

Proof. Let x1 and x2 be any two numbers in (a, b) with x1 <
x2. Since f is differentiable on (a, b), it must be differentiable on
(x1, x2) and continuous on [x1, x2]. By applying the Mean Value
Theorem to f on the interval [x1, x2], we get a number c such that
x1 < c < x2 and

f ′(c) =
f (x2)− f(x1)

x2 − x1
.

But we assumed that f ′(x) = 0 for all x in (a, b). Therefore,
f (x2) − f (x1) = 0, and so f (x2) = f (x1). Therefore, for any
two numbers x1, x2 in (a, b), f (x1) = f (x2), and so the function
is constant on (a, b).



Theorem. If f ′(x) > 0 on an interval, then f is increasing on
that interval.

Proof. Let x1 and x2 be any two numbers in the interval, x1 < x2.
According to the definition of an increasing function, we have to
show that f (x1) < f (x2).

Because we are given that f ′(x) > 0, we know that f is differen-
tiable on the interval (specifically on [x1, x2], and so by the Mean
Value Theorem, there is a number c, x1 < c < x2, such that

f ′(c) =
f (x2)− f(x1)

x2 − x1
.

Since f ′(c) > 0, the fraction on the right is positive. Since x2 > x1,
x2 − x1 ≥ 0, and so f (x2)− f (x1) > 0 too. Thus f (x2) > f (x1),
and so the function is increasing.



Theorem. If for a function f on some interval I , f ′(x) < 0, then
f is decreasing on I .

Proof. Let x1 and x2 be any two numbers in the interval, x1 < x2.
According to the definition of a decreasing function, we have to
show that f (x1) > f (x2).

Because we are given that f ′(x) < 0, we know that f is differen-
tiable on the interval (and specifically on [x1, x2], and so by the
Mean Value Theorem, there is a number c, x1 < c < x2, such that

f ′(c) =
f (x2)− f(x1)

x2 − x1
.

Since f ′(c) < 0, the fraction on the right is negative. Since x2 >
x1, x2 − x1 ≥ 0, and so f (x2)− f (x1) < 0. Thus f (x1) > f (x2),
and so the function is decreasing.



Recall: A critical number of a function f is a number c in the
domain of f such that either f ′(c) = 0 or f ′(c) does not exist.

To look for local minimums and maximums, we have the following
test:

The First Derivative Test. Suppose that c is a critical num-
ber of a continuous function f .

(a) If f ′ changes from positive to negative at c, then f has a local
maximum at c.

(b) If f ′ changes from negative to positive at c, then f has a local
minimum at c.

(c) If f ′ does not change sign at c (for example, if f ′ is positive on
both sides of c, or negative on both sides), then f has no local
maximum or minimum at c.



Definitions. If the graph f lies above all of its tangent on an
interval I , then it is called concave up on I . If the graph of f lies
below all of its tangents on I , then it is called concave down on
I . A point P on a curve y = f (x) is called an inflection point
if f is continuous there, and the curve changes from concave up
to concave down, or from concave down to concave up at P .

To determine the concavity of a function at a given point, we have
the following test:

Concavity Test.

(a) If for all x in some interval I , f ′′(x) > 0, then the graph of f
is concave upward on I .

(b) If for all x in some interval I , f ′′(x) < 0, then the graph of f
is concave down on I .



As a consequence of the concavity test, we have the following
second derivative test for finding local minimums and maximums:

Second Derivative Test. Suppose f ′′ is continuous near c.

(a) If f ′(c) = 0 and f ′′(c) > 0, then f has a local minimum at c.

(b) If f ′(c) = 0 and f ′′(c) < 0, then f has a local maximum at c.



Summary of Curve Sketching

The following list is intended as a guide for sketching a curve
y = f (x) by hand. Not every item is relevant to every function,
but the list should provide all the information you need to make
a sketch that displays the most important aspects of the function.

A. Find the domain.

B. Find the x and y intercepts

C. Check Symmetry (even or odd function)

D. Check for horizontal asymptotes

E. Check for vertical asymptotes

F. Check the intervals of increase and decrease

G. Find local maximum and minimum values

H. Find intervals of concavity and points of inflection



4.7. Optimization Problems

One major application of absolute extrema we have here is also
referred to as an optimization problem. This is a problem
in which we are attempting to accomplish some goal in the “best
possible way” (whatever that means in context); these are in gen-
eral...

WORD PROBLEMS



Some people find it hard to distinguish between Optimization
problems and Related Rates problems, since both are word prob-
lems. The key is that in a Related Rates problem, quantities
are changing over time. In an optimization problem, nothing is
“happening over time”; the problem takes place before anything
is done.



Steps in solving an optimization problem

1. Understand the problem

– draw a picture

– determine knowns and unknowns

– understand question being asked (put yourself in the scenario)

–what quantity is being maximized or minimized?

2. Create a variable for the value being maximized or minimized
(lets call it Q for now), and for any other variables

3. Express Q as a function of the other variables and constants

4. Use relationships given to express Q as a function of exactly
one other unknown

5. Find the absolute maximum or minimum (as the question asks)
for this function using techniques from 4.1 - 4.3 (e.g., Closed
Interval Method), or...



Using the first derivative test, when there is only one critical point,
we can find absolute extremes quite quickly:

The First Derivative Test for Absolute Extreme Val-
ues. Suppose that c is a critical number of a continuous function
f defined on an interval.

(a) If f ′(x) > 0 for all x < c and f ′(x) < 0 for all x > c, then f (c)
is the absolute maximum value of f .

(b) If f ′(x) < 0 for all x < c and f ′(x) > 0 for all x > c, then f (c)
is the absolute minimum value of f .



In the same way the second derivative test can be used.

The Second Derivative Test for Absolute Extreme Val-
ues. Suppose that c is a critical number of a continuous function
f defined on an interval.

(a) If f ′′(x) < 0 for all x in the domain, then f (c) is the absolute
maximum value of f .

(b) If f ′′(x) > 0 for all x in the domain, then f (c) is the absolute
minimum value of f .



Antiderivatives

There are a number of real life scenarios where the rate of change of
something is readily known, but the value is not. In mathematical
terms, the is saying that the derivative of a function is known, but
the function itself is not. We now discuss “going backwards” from
a derivative back to the function.

Definition. A function F is called an antiderivative of f on
an interval I if F ′(x) = f (x) for all x in I .

Theorem. If F is an antiderivative of f on an interval I , then
the most general antiderivative of f on I is

F (x) + C

where C is an arbitrary constant.



We use the symbol

∫
f (x)dx to denote the operation “find the

most general antiderivative of f(x)”.

This notation is called the indefinite integral. The symbol

∫
is called an integral sign. It is an elongated S. In the notation∫

f (x)dx, f (x) is called the integrand. The symbol dx has no

official meaning by itself.



Table of Antiderivatives

Function Particular antiderivative Function Particular antiderivative

cf (x) cF (x) sinx − cos x

f (x) + g(x) F (x) +G(x) sec2 x tanx

xn(n ̸= −1) xn+1

n+1 sec x tanx sec x
1
x ln |x| ex ex

cos x sinx



Indefinite integral rules

∫
cf (x)dx = c

∫
f (x)dx

∫
[f (x) + g(x)]dx =

∫
f (x)dx +

∫
g(x)dx∫

kdx = kx + C∫
xndx = xn+1

n+1 + C
∫

1
xdx = ln|x| + C∫

exdx = ex + C
∫
axdx = ax

ln a + C∫
sinxdx = − cos x + C

∫
cos xdx = sin x + C∫

sec2 xdx = tan x + C
∫
csc2 xdx = − cot x + C∫

sec x tanxdx = sec x + C
∫
csc x cot xdx = − csc x + C


