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Abstract

The Probabilistic Method is a powerful tool in discrete math-

ematics, combinatorics, and graph theory. Since it has be-

come more popular, it has also been applied to problems in

number theory, combinatorial geometry, linear algebra and

real analysis. Pioneered by Paul Erdös, the method allows

one to prove existence of a structure with particular proper-

ties by defining an appropriate probability space of structures

and showing that the desired properties hold in the space

with positive probability.

In this talk I will present some relevant probability theory, the

probabilistic method, and some applications.
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Ramsey Theory

Definitions: Graph, Vertex, Edge, Complete Graph Kn, Edge

Coloring

The Ramsey Number R(k, k) is then the smallest integer n

such that however we color the edges of a Kn with two colors

(say red and blue), there will always be a monochromatic

subgraph Kk.



Bounding R(k, k) by Counting

We will use both a counting argument, and the probabilistic

method to prove the following theorem:

Theorem 1 If
(

n
k

)

21−(k
2) < 1 then R(k, k) > n. In fact, for

k ≥ 3, R(k, k) > 2
k
2.

Proof: Counting Argument



Bounding R(k, k) with the Probabilistic

Method

Proof of Theorem 1: Probabilistic Argument

The two arguments are of about the same complexity in this

example, but when problems become more complex, count-

ing becomes exceedingly so, while the probabilistic method

remains relatively straight forward.



Basic Probability

Definition 2 A Sample Space (for our purposes) is a pair

(Ω, P ) where Ω is a finite set, and P : Ω → [0,1] satisfies

∑

G∈Ω

P (G) = 1

Definition 3 A Random Variable is a function X : Ω → R.

If X : Ω → {0,1}, X is called an Indicator Random Variable.

Note: Often X is written, however, X(G) is meant.

Definition 4 The Expected Value of X is defined as

E(X) =
∑

G∈Ω

X(G) · P (G)



Theorem 5 Linearity of Expectation: Expectation as above

is a Linear Function. I.e. for any two random variables X

and Y , and any k ∈ R,

E(kX + Y ) = kE(X) + E(Y )

Definition 6 The Variance of X is defined as E((X−E(X))2)

Definition 7 The ith moment of a random variable X is

defined to be E(Xi). Specifically, the 1st moment of X is

E(X) and the 2nd moment of X is E(X2).



Models of Random Graphs

Model A - The Binomial Model

Definition 8 Fix n ∈ Z+, 0 ≤ p ≤ 1. Let Ω be the set of all

labelled graphs on n vertices. For any graph G ∈ Ω with q

edges, define P : Ω → [0,1] as

P (G) = pq(1 − p)(
n
2)−q

Note: the binomial theorem proves immediately that (Ω, P )

is a valid sample space (P (Ω) = 1)

Think of this as picking edges consecutively by flipping a coin
(

n
2

)

times that will land heads with probability p.



Model B - The Uniform Model

Definition 9 Let Ω be the set of all labelled graphs with q

edges, and let

P (G) =
(

(

n
2

)

q

)

−1

Note: when q ∼ p
(

n
2

)

, these models are ”nearly equivalent”

Model B was used in 1939 to show that graphs on n vertices

with q ∼ 1
2n lnn edges are ”almost surely” connected. In

other words,

P (G is connected) → 1 as n → ∞



The Method’s Power

The power of the method comes from it’s ability to prove

existence without the necessity of construction. When ob-

jects (like Graphs, or other structures) become very large,

constructing them becomes an unreasonable task to under-

take for man, computer, or even group of computers! At this

point, we can only hope to prove existence (or non-existence).

This is especially true in the studies of asymptotic behavior,

like Extremal Graph Theory.



Example: Graph Theory

Theorem 10 Let G = (V, E) be a graph with n vertices and

e edges. Then G contains a bipartite subgraph with at least

e/2 edges.

Proof:

This theorem was also extended by Noga Alon (1996) to the

following tight theorem:

Theorem 11 Let G = (V, E) be a graph with n vertices and

e edges. Then G contains a bipartite subgraph with at least
e
2 +

√

e
8 + ce

1
4 edges.



Example: Combinatorial Number Theory

Definition 12 A subset A of an abelian group G is called

sum-free if there are no a1, a2, a3 ∈ A such that a1 + a2 = a3.

Theorem 13 (Erdös, 1965) Every set B = {b1, ..., bn} of n

non-zero integers contains a sum-free subset A with |A| > n
3

Proof:



The Second Moment Method

Let X be a random variable (X(G) ≥ 0). Lets say we have

come across a situation involving X where we know that

E(X) → 0 as n → ∞

Can we then say that P (X = 0) → 1?

Answer: YES

Lets say we have another situation where

E(X) → ∞ as n → ∞

Can we then say that P (X = 0) → 0?

Answer: NO! No matter how big E(X) gets, it could be the

case that for half the G’s, X(G) = 2E(X), and for the other

half, X(G) = 0. In this case, P (X = 0) = 1
2 > 0!



We need a little bit more information here to be able to

make the conclusion we want: we need to know about the

distribution of the values. Specifically, we need to look at

the variance.

Theorem 14 (Chebyshev’s Inequality) For t ≥ 0,

P (|X − E(X)| ≥ t) ≤
V (X)

t2

Using Chebyshev’s Inequality with t = E(X) yields:

P (X = 0) ≤ P (|X − E(X)| ≥ E(X))

≤
V (X)

E(X)2



So if we have that E(X) → 0, and

limn→∞
V (X)

E(X)2
= 0

then it must be that

P (X = 0) → 0

Using this fact is called the Second Moment Method.



Second Moment Method & Threshold

Functions Example

Theorem 15 Let G be a graph with n vertices and approxi-

mately c1
2nlogn edges. Then

if c > 1 then P (G has isolated vertices) → 0

and

if c < 1 then P (G has isolated vertices) → 1

Proof:



Threshold Functions

Let A be the set of graphs with n vertices and q edges with

property Q in the uniform model G(n, q). Let c be a constant.

A function t(c, n) is called a threshold function for Q if there

exists c0 such that when q ∼ t(c, n)

1. c > c0 =⇒ P (A) → 1 (almost all graphs in G(n,q) have

property Q), and

2. c < c0 =⇒ P (A) → 0 (almost none of the graphs in

G(n,q) have property Q)
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