Extremal Graph Theory

Can be viewed as the study of how graph constants ensure certain
properties

Graph Constant =— Property

order contains K3

size contains K,
connectivity contains G
min degree contains a cycle
max degree is r-colourable

X(G) is k-partite

diameter



For a first example,

Theorem (Mantel’s Theorem (1905)).
For n > 3, it a graph G with n vertices has more than ”ZQJ edges,

then G contains a triangle (a subgraph isomorphic to K3).

Note this is best possible, since the graph

K1)

has VZQJ edges, and does not contain a triangle.



In general, for any n € Z*, and any graph G, let
ex(n; @)

denote the largest integer e (if any exists) such that there exists
a graph on m vertices with e edges not containing a subgraph
isomorphic to G.

The number ex(n; G) is called an extremal number (or some-
times a Turan number, for reasons we will see shortly).

A graph F' on n vertices is called an extremal graph for G it
F' contains no copy of G, and |E(F)| = ex(n; G).



Fix a graph G, and n,e € Z*.

To show that ex(n; G) > e, it is necessary and sufficient to show
there exists a graph F' on n vertices with e edges such that F' does
not contain a copy of G.

To show that ex(n; G) < e, it is necessary and sufficient to show
that EVERY graph with n vertices and e edges contains a copy of
G (or equivalently that if a graph F' on n vertices does not contain
a copy of G, then |E(F)| < e).



For any n, k € Z7, let T'(n, k) denote the k-partite graph with n
vertices where the partite sets are as equal in size as possible.

For example, T(12,5) = . ..

Note that if n < k, then T'(n, k) = K,,.



Let t(n, k) = |E(T(n, k))|.

Proposition.

t(n, k) = (S) +(n—Fk)(k—1)+tn—k, k).



Theorem (Turan’s Theorem (1941/1955)).
Let n,k € Z*. Then ex(n; K1) = t(n,k) and T'(n, k) is the

unique extremal K. -free graph.

Proof...



The extremal graph for K5 is bipartite. If we look at non-bipartite
oraphs, we can shave off many edges.

Theorem (Erdés-Gallai (1962)). For any non-bipartite graph
G with n vertices, if

E(G) > ex(n —1; K3) +2 = {(n ; 1>2J +2,

then G contains a triangle.



Theorem (not sure who did this). Let V be a set with
V]| = 2n, and let G be a graph with vertex set V. Then G
contains a bipartite subgraph H in which each partite set has size
n, and

B(H)| > 1B @G|

Generalizing to hypergraphs...

Theorem. Let V be a set with |V| = rn, and let G be an
r-uniform hypergraph with vertex set V. Then G contains a -
partite r-uniform subhypergraph H in which each partite set has
size n, and



Ramsey Theory

Can be viewed as the study of “structure” under partition (or
colouring).

Copies of H Copies of G

“Complete disorder is impossible” — T'. S. Motzkin

“Of three ordinary people, two must have the same sex.”
—D. J. Kleitman.



The concept of a partition, or a colouring, is crucial to Ramsey
theory:.

If S and C are sets with |C| = r > 2, any function f: S — C'is
an r-colouring ot S, and the elements of C' are called colours. For
cach i € C, f~11) C S is called a colour class, and any subset
of a colour class is said to be monochromatic. For example, it
S = {a,b,c}, C = {red,blue}, and f(a) = f(c) = red, and
f(b) = blue, then the colour classes are {a, c} and {b}.



The pigeonhole principle is a basic tool in Ramsey theory, and is
itself now considered the simplest “Ramsey-type” theorem.

Theorem (Pigeonhole principle).
If at least mr + 1 objects are partitioned into r (possibly empty)
subsets, at least one subset contains m + 1 elements.

The pigeonhole principle can be restated in various ways, e.q.:

(a)If S is a set with |[S| > mr +1,and S = S;U---U S, is a
partition of S, then 3¢ € [1, 7| such that |S;| > m + 1.

(b)If f : [1,mr+1] — [1,7], then 37 € [1, 7] such that | f~1(:)] >
m + 1.

Theorem (Infinite pigeonhole principle).
V finite colouring of an infinite set, there exists a colour class which
is infinite.



Two theorems due to Ramsey generalize the finite and infinite ver-
sions of the pigeonhole principle to the colouring ot k-sets, rather
than just singletons.

Theorem (Ramsey’s theorem for finite sets, 1930).
Vm,k,r € ZT, 3 aleast n = Ry(m;r) € Z* such that V n-set
N, and V r-colouring f : [N]* — [1,7] of the k-subsets of N, 3
M € [N]™ such that [M]"* is monochromatic.

Theorem (Ramsey’s theorem for infinite sets, 1930).
V k,r € Z", every infinite set X, and every f : [X]¥ — [1,7], 3
an infinite set Y C X such that [Y]* is monochromatic.

When k = 1, the two versions of Ramsey’s theorem are exactly
the two versions of the pigeonhole principle.



To show that Ryp(m;r) > x, it suffices to exhibit an r-colouring
of the k-tuples of an z-set containing no m-set M such that [M]*
is monochromatic.

To show that Ri(m;r) < z, it suffices to prove that for every
r-colouring of the k-tuples of an z-set, there is an m-set M such
that [M]* is monochromatic.



[t is a fairly quick proof (a good exercise) to see that if Ramsey’s
theorem is true for » = 2, then it is true for all . So we will prove
it in the case r = 2.

In order to prove Ramsey’s theorem, we will introduce an off-
diagonal version. Let Ry(a,b) be the least integer n such that V
n-set N, and V r-colouring f : [N]¥ — {red, blue} of the k-subsets
of N, 3 either M; € [N]® such that [M;]* is monochromatic red,
or a M, € [N]° such that [M>]* is monochromatic blue.

Note that:
Ry(a,b) < Ri(max{a,b};2),

Ry (m;2) = Ri(m, m).



An “arrow notation” (known as a “Ramsey arrow”) is used to

simplify statements that are similar to Ramsey’s theorem. (intro-
duced by Erdos and Rado in 1953).

For positive integers n, m, k and r, write
k

r

if Vn-set N,and V f : [N]¥ — [1,r], 3 M € [N]™ such that [M]*
is monochromatic.

n — (m)

Ramsey-type theorems can be hard to read and understand at first
due to the number of alternating quantifiers. For example, there
are a total of four quantification switches in Ramsey’s theorem
(stated below for colouring the integers):

Ym,k,r € Z",In € Z* st. Vf : [1,n]" — [1,7],
Ji € [1,7r] and S € [1,n]™ st. VS' € [S])F, f(S) =i.



Using the arrow notation, Ramsey’s theorem can be restated briefly:

Theorem (Ramsey’s theorem restated).
Vm,k,r € Z", 3 aleast integer n = Ry(m;r) such that
k

n —s (m),.

GRAPH RAMSEY THEORY

The arrow notation has been generalized to graphs as follows: let
F' be a “large” graph, G be a “medium sized” graph, and H a
“small” graph.



Copies of H Copies of G

A “copy” of H in G means a subgraph (either weak or induced
depending on context) of GG isomorphic to H. If V r-colouring of
the copies of H in F', there is a copy G’ of G in F' such that every
copy of H in G’ is the same colour, then write

F— (G).

r



The field of “Graph Ramsey theory” is essentially the study of
aspects of various graph Ramsey arrows. Since the copies of K.
inside K, are in one-to-one correspondence with the k-subsets of
an n-set, Ramsey’s theorem can be restated in terms of graphs.

Theorem (Ramsey’s theorem—graph theoretic).
V' m,k,r € Z", 3 a least integer n = Ry(m;r) such that

K, — (K,

r



HiLBERT’S CUBE LEMMA

Hilbert’s Cube lemma is one of the earliest examples of a Ramsey-
type result, predating Ramsey himself, dating from 1892.

Fix xp € Z* U {0}, d € Z", and let x1,...,x4 € Z". The family
of integers

H(xzg,x1,...,xq9) = {:CQ-FZZCZ'I]C [1,d]}

il
is called an affine cube of dimension d (or an affine d-cube). For
example,

H(0,1,1,1)={0,1,2,3} and H(5,2,3) = {5,7,8,10}.

Theorem (Hilbert, 1892).
Vr,d e Z" 3 n = h(d;r) such that V r-colouring f : [1,n] —
11, 7], 3 a monochromatic affine d-cube.



RAMSEY THEORY ON THE INTEGERS

An arithmetic progression of length k£ with difference

b, written AP, is a sequence of numbers of the form {a,a+b,a+
2b, -+ a+ (k—1)b}. For example,

3,8,13, 18
is an APy with difference 5.

Theorem (van der Waerden, 1927).

Fix k,r € Z*. Then 4 n = W(k,r) such that for every r-
colouring f : [1,n] — [1,7]|, 3 a monochromatic AP, (arithmetic
progression of length k). i.e., 3 a,d € Z7, ¢ € [1,r] such that
{a+1id:i€[l,k]} C1,n|, and for all i € [1, k], f(a + id) = c.

The bounds on W (k, r) produced by the original proof to van der
Waerden'’s theorem are very poor, and still today little is known.



Related to van der Waerden’s theorem...

Theorem (Schur’s Lemma, 1916).
Fix r € Z*. Then 3 a least integer n = S(r) such that for every
r-colouring f : [1,n] — {1,2,...,7}, there exist z,y € |1, n| such

that f(z) = f(y) = flz +y).
Proof...



Fix r € Z7, and let n = Ry(3;r) — 1. Let f: [1,n] — [1,7] be
an r-colouring of |1, n|. Define an r-colouring f”,
o+ 17 — 1,7,

where for a,b € [1,n+ 1],a < b, f'({a,b}) = f(b — a). Then
by the choice of n, 3 a triangle, monochromatic under f’. i.e., 3
u,v,w € [1,n+ 1], u < v < w such that

f/({u7 U}) — f,({uv w}) — f/({?), w})
By the definition of f’, it then follows that
flo—u)= flw—u)= flw—0)
Let t =v—wu,y=w—wv. Then f(z)= f(y) = flx+y). [

Corollary.
For all r € Z*, S(r) < Ro(3;71) — 1.



