Extremal Graph Theory

Can be viewed as the study of how graph constants ensure certain properties

Graph Constant \Longrightarrow	Property
order	contains K_{3}
size	contains K_{m}
connectivity	contains G
min degree	contains a cycle
max degree	is r-colourable
$\chi(G)$	is k-partite
diameter	

For a first example,

Theorem (Mantel's Theorem (1905)).

For $n \geq 3$, if a graph G with n vertices has more than $\left\lfloor\frac{n^{2}}{4}\right\rfloor$ edges, then G contains a triangle (a subgraph isomorphic to K_{3}).

Note this is best possible, since the graph

$$
K_{\left\lfloor\frac{n}{2}\right\rfloor,\left\lceil\frac{n}{2}\right\rceil}
$$

has $\left\lfloor\frac{n^{2}}{4}\right\rfloor$ edges, and does not contain a triangle.

In general, for any $n \in \mathbb{Z}^{+}$, and any graph G, let

$$
e x(n ; G)
$$

denote the largest integer e (if any exists) such that there exists a graph on n vertices with e edges not containing a subgraph isomorphic to G.

The number $e x(n ; G)$ is called an extremal number (or sometimes a Turan number, for reasons we will see shortly).

A graph F on n vertices is called an extremal graph for G if F contains no copy of G, and $|E(F)|=e x(n ; G)$.

Fix a graph G, and $n, e \in \mathbb{Z}^{+}$.
To show that $e x(n ; G) \geq e$, it is necessary and sufficient to show there exists a graph F on n vertices with e edges such that F does not contain a copy of G.

To show that $e x(n ; G)<e$, it is necessary and sufficient to show that EVERY graph with n vertices and e edges contains a copy of G (or equivalently that if a graph F on n vertices does not contain a copy of G, then $|E(F)|<e)$.

For any $n, k \in \mathbb{Z}^{+}$, let $T(n, k)$ denote the k-partite graph with n vertices where the partite sets are as equal in size as possible.

For example, $T(12,5)=\ldots$

Note that if $n<k$, then $T(n, k)=K_{n}$.

Let $t(n, k)=|E(T(n, k))|$.

Proposition.

$$
t(n, k)=\binom{k}{2}+(n-k)(k-1)+t(n-k, k)
$$

Theorem (Turán's Theorem (1941/1955)).
Let $n, k \in \mathbb{Z}^{+}$. Then $\operatorname{ex}\left(n ; K_{k+1}\right)=t(n, k)$ and $T(n, k)$ is the unique extremal K_{k+1}-free graph.

Proof...

The extremal graph for K_{3} is bipartite. If we look at non-bipartite graphs, we can shave off many edges.

Theorem (Erdős-Gallai (1962)). For any non-bipartite graph G with n vertices, if

$$
E(G) \geq e x\left(n-1 ; K_{3}\right)+2=\left\lfloor\frac{(n-1)^{2}}{4}\right\rfloor+2
$$

then G contains a triangle.

Theorem (not sure who did this). Let V be a set with $|V|=2 n$, and let G be a graph with vertex set V. Then G contains a bipartite subgraph H in which each partite set has size n, and

$$
|E(H)| \geq \frac{1}{4}|E(G)|
$$

Generalizing to hypergraphs...
Theorem. Let V be a set with $|V|=r n$, and let G be an r-uniform hypergraph with vertex set V. Then G contains a r partite r-uniform subhypergraph H in which each partite set has size n, and

$$
|E(H)| \geq \frac{r!}{r^{r}}|E(G)|
$$

Ramsey Theory

Can be viewed as the study of "structure" under partition (or colouring).

"Complete disorder is impossible" - T. S. Motzkin
"Of three ordinary people, two must have the same sex." -D. J. Kleitman.

The concept of a partition, or a colouring, is crucial to Ramsey theory.

If S and C are sets with $|C|=r \geq 2$, any function $f: S \rightarrow C$ is an r-colouring of S, and the elements of C are called colours. For each $i \in C, f^{-1}(i) \subseteq S$ is called a colour class, and any subset of a colour class is said to be monochromatic. For example, if $S=\{a, b, c\}, C=\{$ red, blue $\}$, and $f(a)=f(c)=$ red, and $f(b)=$ blue, then the colour classes are $\{a, c\}$ and $\{b\}$.

The pigeonhole principle is a basic tool in Ramsey theory, and is itself now considered the simplest "Ramsey-type" theorem.

Theorem (Pigeonhole principle).

If at least $m r+1$ objects are partitioned into r (possibly empty) subsets, at least one subset contains $m+1$ elements.

The pigeonhole principle can be restated in various ways, e.g.:
(a) If S is a set with $|S| \geq m r+1$, and $S=S_{1} \cup \cdots \cup S_{r}$ is a partition of S, then $\exists i \in[1, r]$ such that $\left|S_{i}\right| \geq m+1$.
(b) If $f:[1, m r+1] \rightarrow[1, r]$, then $\exists i \in[1, r]$ such that $\left|f^{-1}(i)\right| \geq$ $m+1$.

Theorem (Infinite pigeonhole principle).

\forall finite colouring of an infinite set, there exists a colour class which is infinite.

Two theorems due to Ramsey generalize the finite and infinite versions of the pigeonhole principle to the colouring of k-sets, rather than just singletons.

Theorem (Ramsey's theorem for finite sets, 1930). $\forall m, k, r \in \mathbb{Z}^{+}, \exists$ a least $n=R_{k}(m ; r) \in \mathbb{Z}^{+}$such that $\forall n$-set N, and $\forall r$-colouring $f:[N]^{k} \rightarrow[1, r]$ of the k-subsets of N, \exists $M \in[N]^{m}$ such that $[M]^{k}$ is monochromatic.

Theorem (Ramsey's theorem for infinite sets, 1930). $\forall k, r \in \mathbb{Z}^{+}$, every infinite set X, and every $f:[X]^{k} \rightarrow[1, r], \exists$ an infinite set $Y \subseteq X$ such that $[Y]^{k}$ is monochromatic.

When $k=1$, the two versions of Ramsey's theorem are exactly the two versions of the pigeonhole principle.

To show that $R_{k}(m ; r)>x$, it suffices to exhibit an r-colouring of the k-tuples of an x-set containing no m-set M such that $[M]^{k}$ is monochromatic.

To show that $R_{k}(m ; r) \leq x$, it suffices to prove that for every r-colouring of the k-tuples of an x-set, there is an m-set M such that $[M]^{k}$ is monochromatic.

It is a fairly quick proof (a good exercise) to see that if Ramsey's theorem is true for $r=2$, then it is true for all r. So we will prove it in the case $r=2$.

In order to prove Ramsey's theorem, we will introduce an offdiagonal version. Let $R_{k}(a, b)$ be the least integer n such that \forall n-set N, and $\forall r$-colouring $f:[N]^{k} \rightarrow\{$ red, blue $\}$ of the k-subsets of N, \exists either $M_{1} \in[N]^{a}$ such that $\left[M_{1}\right]^{k}$ is monochromatic red, or a $M_{2} \in[N]^{b}$ such that $\left[M_{2}\right]^{k}$ is monochromatic blue.

Note that:

$$
\begin{gathered}
R_{k}(a, b) \leq R_{k}(\max \{a, b\} ; 2) \\
R_{k}(m ; 2)=R_{k}(m, m)
\end{gathered}
$$

An "arrow notation" (known as a "Ramsey arrow") is used to simplify statements that are similar to Ramsey's theorem. (introduced by Erdős and Rado in 1953).

For positive integers n, m, k and r, write

$$
n \longrightarrow(m)_{r}^{k}
$$

if $\forall n$-set N, and $\forall f:[N]^{k} \rightarrow[1, r], \exists M \in[N]^{m}$ such that $[M]^{k}$ is monochromatic.

Ramsey-type theorems can be hard to read and understand at first due to the number of alternating quantifiers. For example, there are a total of four quantification switches in Ramsey's theorem (stated below for colouring the integers):

$$
\begin{aligned}
& \forall m, k, r \in \mathbb{Z}^{+}, \exists n \in \mathbb{Z}^{+} \text {s.t. } \forall f:[1, n]^{k} \rightarrow[1, r], \\
& \quad \exists i \in[1, r] \text { and } S \in[1, n]^{m} \text { s.t. } \forall S^{\prime} \in[S]^{k}, f\left(S^{\prime}\right)=i .
\end{aligned}
$$

Using the arrow notation, Ramsey's theorem can be restated briefly:

Theorem (Ramsey's theorem restated).

$\forall m, k, r \in \mathbb{Z}^{+}, \exists$ a least integer $n=R_{k}(m ; r)$ such that

$$
n \longrightarrow(m)_{r}^{k} .
$$

Graph Ramsey Theory

The arrow notation has been generalized to graphs as follows: let F be a "large" graph, G be a "medium sized" graph, and H a "small" graph.

A "copy" of H in G means a subgraph (either weak or induced depending on context) of G isomorphic to H. If $\forall r$-colouring of the copies of H in F, there is a copy G^{\prime} of G in F such that every copy of H in G^{\prime} is the same colour, then write

$$
F \longrightarrow(G)_{r}^{H}
$$

The field of "Graph Ramsey theory" is essentially the study of aspects of various graph Ramsey arrows. Since the copies of K_{k} inside K_{n} are in one-to-one correspondence with the k-subsets of an n-set, Ramsey's theorem can be restated in terms of graphs.

Theorem (Ramsey's theorem-graph theoretic).

$\forall m, k, r \in \mathbb{Z}^{+}, \exists$ a least integer $n=R_{k}(m ; r)$ such that

$$
K_{n} \longrightarrow\left(K_{m}\right)_{r}^{K_{k}} .
$$

Hilbert's Cube Lemma

Hilbert's Cube lemma is one of the earliest examples of a Ramseytype result, predating Ramsey himself, dating from 1892.

Fix $x_{0} \in \mathbb{Z}^{+} \cup\{0\}, d \in \mathbb{Z}^{+}$, and let $x_{1}, \ldots, x_{d} \in \mathbb{Z}^{+}$. The family of integers

$$
H\left(x_{0}, x_{1}, \ldots, x_{d}\right)=\left\{x_{0}+\sum_{i \in I} x_{i}: I \subseteq[1, d]\right\}
$$

is called an affine cube of dimension d (or an affine d-cube). For example,

$$
H(0,1,1,1)=\{0,1,2,3\} \quad \text { and } \quad H(5,2,3)=\{5,7,8,10\} .
$$

Theorem (Hilbert, 1892).

$\forall r, d \in \mathbb{Z}^{+}, \exists n=h(d ; r)$ such that $\forall r$-colouring $f:[1, n] \rightarrow$
$[1, r], \exists$ a monochromatic affine d-cube.

RAMSEY Theory on the Integers

An arithmetic progression of length k with difference b, written $A P_{k}$, is a sequence of numbers of the form $\{a, a+b, a+$ $2 b, \cdots, a+(k-1) b\}$. For example,

$$
3,8,13,18
$$

is an $A P_{4}$ with difference 5 .
Theorem (van der Waerden, 1927).
Fix $k, r \in \mathbb{Z}^{+}$. Then $\exists n=W(k, r)$ such that for every r colouring $f:[1, n] \rightarrow[1, r], \exists$ a monochromatic $A P_{k}$ (arithmetic progression of length k). i.e., $\exists a, d \in \mathbb{Z}^{+}, c \in[1, r]$ such that $\{a+i d: i \in[1, k]\} \subseteq[1, n]$, and for all $i \in[1, k], f(a+i d)=c$.

The bounds on $W(k, r)$ produced by the original proof to van der Waerden's theorem are very poor, and still today little is known.

Related to van der Waerden's theorem...
Theorem (Schur's Lemma, 1916).
Fix $r \in \mathbb{Z}^{+}$. Then \exists a least integer $n=S(r)$ such that for every r-colouring $f:[1, n] \rightarrow\{1,2, \ldots, r\}$, there exist $x, y \in[1, n]$ such that $f(x)=f(y)=f(x+y)$.

Proof...

Fix $r \in \mathbb{Z}^{+}$, and let $n=R_{2}(3 ; r)-1$. Let $f:[1, n] \rightarrow[1, r]$ be an r-colouring of $[1, n]$. Define an r-colouring f^{\prime},

$$
f^{\prime}:[1, n+1]^{2} \rightarrow[1, r]
$$

where for $a, b \in[1, n+1], a<b, f^{\prime}(\{a, b\})=f(b-a)$. Then by the choice of n, \exists a triangle, monochromatic under f^{\prime}. i.e., \exists $u, v, w \in[1, n+1], u<v<w$ such that

$$
f^{\prime}(\{u, v\})=f^{\prime}(\{u, w\})=f^{\prime}(\{v, w\})
$$

By the definition of f^{\prime}, it then follows that

$$
f(v-u)=f(w-u)=f(w-v)
$$

Let $x=v-u, y=w-v$. Then $f(x)=f(y)=f(x+y)$.

Corollary.

For all $r \in \mathbb{Z}^{+}, S(r) \leq R_{2}(3 ; r)-1$.

