
Extremal Graph Theory

Can be viewed as the study of how graph constants ensure certain
properties

Graph Constant =⇒ Property
order contains K3

size contains Km

connectivity contains G
min degree contains a cycle
max degree is r-colourable

χ(G) is k-partite
diameter



For a first example,

Theorem (Mantel’s Theorem (1905)).

For n ≥ 3, if a graph G with n vertices has more than
⌊

n2

4

⌋
edges,

then G contains a triangle (a subgraph isomorphic to K3).

Note this is best possible, since the graph

Kbn
2c,dn

2e
has

⌊
n2

4

⌋
edges, and does not contain a triangle.



In general, for any n ∈ Z+, and any graph G, let

ex(n; G)

denote the largest integer e (if any exists) such that there exists
a graph on n vertices with e edges not containing a subgraph
isomorphic to G.

The number ex(n; G) is called an extremal number (or some-
times a Turan number, for reasons we will see shortly).

A graph F on n vertices is called an extremal graph for G if
F contains no copy of G, and |E(F )| = ex(n; G).



Fix a graph G, and n, e ∈ Z+.

To show that ex(n; G) ≥ e, it is necessary and sufficient to show
there exists a graph F on n vertices with e edges such that F does
not contain a copy of G.

To show that ex(n; G) < e, it is necessary and sufficient to show
that EVERY graph with n vertices and e edges contains a copy of
G (or equivalently that if a graph F on n vertices does not contain
a copy of G, then |E(F )| < e).



For any n, k ∈ Z+, let T (n, k) denote the k-partite graph with n
vertices where the partite sets are as equal in size as possible.

For example, T (12, 5) = . . .

Note that if n < k, then T (n, k) = Kn.



Let t(n, k) = |E(T (n, k))|.
Proposition.

t(n, k) =

(
k

2

)
+ (n− k)(k − 1) + t(n− k, k).



Theorem (Turán’s Theorem (1941/1955)).
Let n, k ∈ Z+. Then ex(n; Kk+1) = t(n, k) and T (n, k) is the
unique extremal Kk+1-free graph.

Proof...



The extremal graph for K3 is bipartite. If we look at non-bipartite
graphs, we can shave off many edges.

Theorem (Erdős-Gallai (1962)). For any non-bipartite graph
G with n vertices, if

E(G) ≥ ex(n− 1; K3) + 2 =

⌊
(n− 1)2

4

⌋
+ 2,

then G contains a triangle.



Theorem (not sure who did this). Let V be a set with
|V | = 2n, and let G be a graph with vertex set V . Then G
contains a bipartite subgraph H in which each partite set has size
n, and

|E(H)| ≥ 1

4
|E(G)|.

Generalizing to hypergraphs...

Theorem. Let V be a set with |V | = rn, and let G be an
r-uniform hypergraph with vertex set V . Then G contains a r-
partite r-uniform subhypergraph H in which each partite set has
size n, and

|E(H)| ≥ r!

rr
|E(G)|.



Ramsey Theory

Can be viewed as the study of “structure” under partition (or
colouring).

“Complete disorder is impossible” — T. S. Motzkin

“Of three ordinary people, two must have the same sex.”
—D. J. Kleitman.



The concept of a partition, or a colouring, is crucial to Ramsey
theory.

If S and C are sets with |C| = r ≥ 2, any function f : S → C is
an r-colouring of S, and the elements of C are called colours. For
each i ∈ C, f−1(i) ⊆ S is called a colour class, and any subset
of a colour class is said to be monochromatic. For example, if
S = {a, b, c}, C = {red, blue}, and f (a) = f (c) = red, and
f (b) = blue, then the colour classes are {a, c} and {b}.



The pigeonhole principle is a basic tool in Ramsey theory, and is
itself now considered the simplest “Ramsey-type” theorem.

Theorem (Pigeonhole principle).
If at least mr + 1 objects are partitioned into r (possibly empty)
subsets, at least one subset contains m + 1 elements.

The pigeonhole principle can be restated in various ways, e.g.:

(a) If S is a set with |S| ≥ mr + 1, and S = S1 ∪ · · · ∪ Sr is a
partition of S, then ∃ i ∈ [1, r] such that |Si| ≥ m + 1.

(b) If f : [1,mr + 1] → [1, r], then ∃ i ∈ [1, r] such that |f−1(i)| ≥
m + 1.

Theorem (Infinite pigeonhole principle).
∀ finite colouring of an infinite set, there exists a colour class which
is infinite.



Two theorems due to Ramsey generalize the finite and infinite ver-
sions of the pigeonhole principle to the colouring of k-sets, rather
than just singletons.

Theorem (Ramsey’s theorem for finite sets, 1930).
∀ m, k, r ∈ Z+, ∃ a least n = Rk(m; r) ∈ Z+ such that ∀ n-set
N , and ∀ r-colouring f : [N ]k → [1, r] of the k-subsets of N , ∃
M ∈ [N ]m such that [M ]k is monochromatic.

Theorem (Ramsey’s theorem for infinite sets, 1930).
∀ k, r ∈ Z+, every infinite set X , and every f : [X ]k → [1, r], ∃
an infinite set Y ⊆ X such that [Y ]k is monochromatic.

When k = 1, the two versions of Ramsey’s theorem are exactly
the two versions of the pigeonhole principle.



To show that Rk(m; r) > x, it suffices to exhibit an r-colouring
of the k-tuples of an x-set containing no m-set M such that [M ]k

is monochromatic.

To show that Rk(m; r) ≤ x, it suffices to prove that for every
r-colouring of the k-tuples of an x-set, there is an m-set M such
that [M ]k is monochromatic.



It is a fairly quick proof (a good exercise) to see that if Ramsey’s
theorem is true for r = 2, then it is true for all r. So we will prove
it in the case r = 2.

In order to prove Ramsey’s theorem, we will introduce an off-
diagonal version. Let Rk(a, b) be the least integer n such that ∀
n-set N , and ∀ r-colouring f : [N ]k → {red, blue} of the k-subsets
of N , ∃ either M1 ∈ [N ]a such that [M1]

k is monochromatic red,
or a M2 ∈ [N ]b such that [M2]

k is monochromatic blue.

Note that:
Rk(a, b) ≤ Rk(max{a, b}; 2),

Rk(m; 2) = Rk(m,m).



An “arrow notation” (known as a “Ramsey arrow”) is used to
simplify statements that are similar to Ramsey’s theorem. (intro-
duced by Erdős and Rado in 1953).

For positive integers n,m, k and r, write

n −→ (m)kr

if ∀ n-set N , and ∀ f : [N ]k → [1, r], ∃M ∈ [N ]m such that [M ]k

is monochromatic.

Ramsey-type theorems can be hard to read and understand at first
due to the number of alternating quantifiers. For example, there
are a total of four quantification switches in Ramsey’s theorem
(stated below for colouring the integers):

∀m, k, r ∈ Z+,∃n ∈ Z+ s.t. ∀f : [1, n]k → [1, r],

∃i ∈ [1, r] and S ∈ [1, n]m s.t. ∀S ′ ∈ [S]k, f (S ′) = i.



Using the arrow notation, Ramsey’s theorem can be restated briefly:

Theorem (Ramsey’s theorem restated).
∀ m, k, r ∈ Z+, ∃ a least integer n = Rk(m; r) such that

n −→ (m)kr .

Graph Ramsey Theory

The arrow notation has been generalized to graphs as follows: let
F be a “large” graph, G be a “medium sized” graph, and H a
“small” graph.



A “copy” of H in G means a subgraph (either weak or induced
depending on context) of G isomorphic to H . If ∀ r-colouring of
the copies of H in F , there is a copy G′ of G in F such that every
copy of H in G′ is the same colour, then write

F −→ (G)Hr .



The field of “Graph Ramsey theory” is essentially the study of
aspects of various graph Ramsey arrows. Since the copies of Kk

inside Kn are in one-to-one correspondence with the k-subsets of
an n-set, Ramsey’s theorem can be restated in terms of graphs.

Theorem (Ramsey’s theorem—graph theoretic).
∀ m, k, r ∈ Z+, ∃ a least integer n = Rk(m; r) such that

Kn −→ (Km)Kk
r .



Hilbert’s Cube Lemma

Hilbert’s Cube lemma is one of the earliest examples of a Ramsey-
type result, predating Ramsey himself, dating from 1892.

Fix x0 ∈ Z+ ∪ {0}, d ∈ Z+, and let x1, . . . , xd ∈ Z+. The family
of integers

H(x0, x1, . . . , xd) =

{
x0 +

∑

i∈I

xi : I ⊆ [1, d]

}

is called an affine cube of dimension d (or an affine d-cube). For
example,

H(0, 1, 1, 1) = {0, 1, 2, 3} and H(5, 2, 3) = {5, 7, 8, 10}.

Theorem (Hilbert, 1892).
∀ r, d ∈ Z+, ∃ n = h(d; r) such that ∀ r-colouring f : [1, n] →
[1, r], ∃ a monochromatic affine d-cube.



Ramsey Theory on the Integers

An arithmetic progression of length k with difference
b, written APk, is a sequence of numbers of the form {a, a+ b, a+
2b, · · · , a + (k − 1)b}. For example,

3, 8, 13, 18

is an AP4 with difference 5.

Theorem (van der Waerden, 1927).
Fix k, r ∈ Z+. Then ∃ n = W (k, r) such that for every r-
colouring f : [1, n] → [1, r], ∃ a monochromatic APk (arithmetic
progression of length k). i.e., ∃ a, d ∈ Z+, c ∈ [1, r] such that
{a + id : i ∈ [1, k]} ⊆ [1, n], and for all i ∈ [1, k], f (a + id) = c.

The bounds on W (k, r) produced by the original proof to van der
Waerden’s theorem are very poor, and still today little is known.



Related to van der Waerden’s theorem...

Theorem (Schur’s Lemma, 1916).
Fix r ∈ Z+. Then ∃ a least integer n = S(r) such that for every
r-colouring f : [1, n] → {1, 2, . . . , r}, there exist x, y ∈ [1, n] such
that f (x) = f (y) = f (x + y).

Proof...



Fix r ∈ Z+, and let n = R2(3; r) − 1. Let f : [1, n] → [1, r] be
an r-colouring of [1, n]. Define an r-colouring f ′,

f ′ : [1, n + 1]2 → [1, r],

where for a, b ∈ [1, n + 1], a < b, f ′({a, b}) = f (b − a). Then
by the choice of n, ∃ a triangle, monochromatic under f ′. i.e., ∃
u, v, w ∈ [1, n + 1], u < v < w such that

f ′({u, v}) = f ′({u,w}) = f ′({v, w}).
By the definition of f ′, it then follows that

f (v − u) = f (w − u) = f (w − v).

Let x = v − u, y = w − v. Then f (x) = f (y) = f (x + y).

Corollary.
For all r ∈ Z+, S(r) ≤ R2(3; r)− 1.


