Recently, binuclear organo group 4 polymerization catalysts\(^1\) based on constrained geometry catalyst (CGC) structures have been reported (e.g., Ti\(^2\)),\(^2\) and cooperativity effects between adjacent catalytic centers were shown to induce significant rate and selectivity enhancements in ethylene and ethylene + \(\alpha\)-olefin (co-)polymerizations. Even traditionally unreactive hindered olefins are readily enchained in the presence of these catalysts.\(^3\) In the nonmetalocene area, new families of group 4 bis-\(^3\) and monophenoxyiminato\(^4\) olefin polymerization catalysts have attracted attention due to ease of preparation, ability to support living polymerizations, and utility in producing new polyolefin architectures.\(^6\) However, despite these attractions, monophenoxyiminato group 4 catalysts generally exhibit surprisingly limited efficiencies for ethylene + \(\alpha\)-olefin copolymerizations.\(^4\) In view of the aforementioned results in which binuclear CGC complexes enhance comonomer incorporation selectivity, the intriguing question arises as to whether two phenoxyiminato catalytic centers could be poised in close proximity and whether copolymers and other new macromolecular architectures might then be accessible. Here we communicate the first binuclear phenoxyiminato zirconium polymerization catalyst and show that it exhibits significantly enhanced polymerization activity in ethylene homopolymerizations versus a mononuclear analogue. Furthermore, the catalyst produces high molecular weight 1-hexene/ethylene copolymers, while the mononuclear analogue yields only traces of copolymer under identical reaction conditions.

Binuclear ligand (Scheme 1) precursor 1 was synthesized\(^7\) by condensation of 2,7-diformyl-1,8-dihydroxynaphthalene\(^8\) and 2,6-diisopropylaniline (2,6-dippNH\(_2\)) in refluxing dichloromethane.\(^7,9\) The asymmetric proton arrangement in the crystal structure\(^10\) of 1 is consistent with solution NMR data.\(^11\) The reagent 2,7-di(2,6-diisopropylphenyl)iminoo-1,8-di(trimethylsiloxy)napththalene (2) was synthesized by LiCH\(_2\)TMS deprotonation of 1 followed by TMSCl silylation.\(^4\) In agreement with previous reports,\(^4b\) direct addition of ZrCl\(_4\) to lithiated phenoxyiminato ligands proceeds with poor selectivity. Therefore, bimetallic precursor \(\text{FI}^2\)-\(\text{Zr}^2\) was synthesized by TMSCl elimination from 2 + ZrCl\(_4\)(THF)\(_2\) in dichloromethane. The shift of the imine proton in the \(^1\)H NMR spectrum from \(\delta\) 8.76 to 12.95 ppm is consistent with \(\text{Zr}^{4+}\) coordination to N.\(^4\) All new compounds were characterized by standard spectroscopic and analytical techniques, with elemental analysis and MALDI-MS\(^7\) confirming the \(\text{FI}^2\)-\(\text{Zr}^2\) bimetallic constitution. Note that the \(\text{FI}^2\) coordination geometry confers significantly more rigidity on the \(\text{M}^+\)-\(\text{M}\) interaction than in binuclear CGC structures\(^3\) and reduces the minimum estimated\(^8\) \(\text{M}^+\)-\(\text{M}\) approach distance to \(\sim 5.9\) Å from \(\sim 7.4\)–\(8.7\) Å.\(^2\)

Ethylene homopolymerizations\(^13\) using \(\text{FI}^2\)-\(\text{Zr}^2\) activated with MAO afford high molecular weight linear polyethylene with activities (Table 1) which are \(\sim 8\times\) that of mononuclear \(\text{FI}-\text{Zr}^\text{I}\) (Table 1, entry 1 vs entry 3). The importance of linear low-density polyethylene (LLDPEs)\(^14\) led us to also investigate ethylene + 1-hexene copolymerizations with \(\text{FI}^2\)-\(\text{Zr}^2\). It was found that efficient 1-hexene co-enchainment is achieved under mild reaction conditions.\(^5\) The copolymers were characterized by \(^1\)H and \(^13\)C NMR\(^16\) spectroscopy and melting point (125–126 °C), and comonomer incorporation is found to increase incrementally over a 5.5-fold 1-hexene concentration range (Table 1, entries 5–7). In marked contrast to these results, mononuclear control catalyst \(\text{FI}^\text{I}\)-\(\text{Zr}^\text{I}\) yields only traces of copolymer under identical reaction conditions (Table 1, entry 8).\(^7\) It has been postulated\(^2\) that two proximate, activated CGC centers facilitate comonomer enchainment via multinuclear interactions involving both metal centers. This CGC-centered picture is clearly more general than previously thought, and Scheme 2 shows a possible scenario for binuclear phenoxyiminato Zr-mediated comonomer enchainment selectivity. In the case of \(\text{FI}^\text{I}-\text{Zr}^\text{I}\), 1-hexene appears to inhibit polymerization activity, while \(\text{FI}^2\)-\(\text{Zr}^2\) displays moderate activity with substantial selectivity for copolymerization. Furthermore, at most only minor depression in \(\text{FI}^2\)-\(\text{Zr}^2\) polymerization activity is observed on 5.5-fold increase in 1-hexene concentration (Table 1, entries 5–7).\(^15\) Meaningful GPC data could not be obtained for entries 1, 3, and 4 due to limited polymer solubility.

These results show that binuclear group 4 phenoxyiminato polymerization catalysts are accessible and that, compared to a mononuclear control, multinuclearity substantially enhances ethylene homopolymerization activity and comonomer enchainment.

Scheme 1. Synthetic Routes to Ligand Precursors and Bimetallic Catalyst \(\text{FI}^2\)-\(\text{Zr}^2\)

Michael R. Salata and Tobin J. Marks

Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113

Received September 11, 2007; E-mail: t-marks@northwestern.edu
selectivity in ethylene + 1-hexene copolymerizations. The ability to produce copolymers presumably reflects the influence of the proximate metal center in promoting comonomer enchainment.

Acknowledgment. Financial support by NSF (CHE-04157407) and DOE (86ER13511) is gratefully acknowledged. We thank Dr. N. Guo and B. Rodriguez for helpful discussions. We thank Prof. E. Szuromi and Prof. R. F. Jordan for hospitality with GPC measurements.

Supporting Information Available: Details of ligand, catalyst synthesis, polymerization experiments, and crystal structures (PDF, CIF). This material is available free of charge via the Internet at pubs.acs.org.

References

(7) See Supporting Information for details.

(11) Broadened resonances are due to proton exchange/tautomerization in anhydrous/anaerobic conditions with attention to exotherm and mass transfer effects.2,7

(12) Spartan '06; Wavefunction, Inc.: Irvine, CA, 2006.

(13) (Co)polymerization experiments were carried out under rigorously anhydrous/anacrobic conditions with attention to exotherm and mass transfer effects.2,7

(15) In related ethylene + 1-hexadiene studies to be published elsewhere, we also find that high comonomer concentrations suppress activity.

Table 1. Ethylene and Ethylene-co-1-Hexene Polymerization Results for Catalysts FI2-Zr2 and FI-Zr8

<table>
<thead>
<tr>
<th>entry</th>
<th>cat</th>
<th>comonomer</th>
<th>temperature (°C)</th>
<th>comonomer conc. (M)</th>
<th>μmol Zr</th>
<th>polymer yield (g)</th>
<th>activityd (×1010)</th>
<th>103 MZ</th>
<th>M0/M2</th>
<th>comonomer incorporation (%)e</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>FI2-Zr2</td>
<td>N/A</td>
<td>24</td>
<td>N/A</td>
<td>10.2</td>
<td>0.167</td>
<td>16(1)</td>
<td>too insol.</td>
<td>too insol.</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td>FI2-Zr2</td>
<td>N/A</td>
<td>40</td>
<td>10.2</td>
<td>0.230</td>
<td>23(1)</td>
<td>155</td>
<td>3.92</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>FI-Zr2</td>
<td>N/A</td>
<td>24</td>
<td>N/A</td>
<td>10.1</td>
<td>0.019</td>
<td>2.1(4)</td>
<td>too insol.</td>
<td>too insol.</td>
<td>N/A</td>
</tr>
<tr>
<td>4</td>
<td>FI-Zr2</td>
<td>N/A</td>
<td>40</td>
<td>N/A</td>
<td>10.1</td>
<td>0.036</td>
<td>3.6(5)</td>
<td>too insol.</td>
<td>too insol.</td>
<td>N/A</td>
</tr>
<tr>
<td>5</td>
<td>FI2-Zr2</td>
<td>1-hexene</td>
<td>40</td>
<td>0.72</td>
<td>10.1</td>
<td>0.196</td>
<td>16(1)</td>
<td>53</td>
<td>4.21</td>
<td>2.1</td>
</tr>
<tr>
<td>6</td>
<td>FI2-Zr2</td>
<td>1-hexene</td>
<td>40</td>
<td>1.6</td>
<td>10.1</td>
<td>0.178</td>
<td>14(1)</td>
<td>93</td>
<td>3.33</td>
<td>5.8</td>
</tr>
<tr>
<td>7</td>
<td>FI2-Zr2</td>
<td>1-hexene</td>
<td>40</td>
<td>4.0</td>
<td>10.1</td>
<td>0.150</td>
<td>12(1)</td>
<td>98</td>
<td>3.31</td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td>FI-Zr1</td>
<td>N/A</td>
<td>24</td>
<td>N/A</td>
<td>10.1</td>
<td><0.001</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

a Polymerizations carried out on a high-vacuum line with MAO as cocatalyst (Al/Zr = 1000:1) in 50 mL of toluene under 1.0 atm ethylene pressure. Ethylene homopolymerizations and ethylene-1-hexene copolymerizations carried out for 60 and 75 min, respectively. Each entry is the average of at least two runs. b Gram polymer/[μmol Zr]-atm-h; estimated uncertainties indicated in parentheses. c FromGPC vs polystyrene standards. d Comonomer incorporations calculated by the method of Pooter et al. N/A = not applicable.