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1.[8] Evaluate the following line integral:∫
C

xy2 + yz2 ds

where C is the curve x = sin3 t, y = 2, z = cos3 t, for 0 ≤ t ≤ π
2 .

Solution:

∫
C

x2y + yz2 ds

=

∫ π
2

0
(sin3 t)(2)2 + (2)(cos3 t)2

√
(3 sin2 t cos t)2 + (0)2 + (3 cos2 t sin t)2 dt

=

∫ π
2

0
(4 sin3 t + 2 cos6 t)

√
9 sin4 t cos2 t + 9 cos4 t sin2 t dt

=

∫ π
2

0
(4 sin3 t + 2 cos6 t)

√
9 sin2 t cos2 t(sin2 t + cos2 t) dt

=

∫ π
2

0
(4 sin3 t + 2 cos6 t)(3 sin t cos t) dt

=

∫ π
2

0
(12 sin4 t cos t + 6 cos7 t sin t) dt

=

(
12
5

sin5 t
) π

2

0
+

(
−6
8

cos8 t
) π

2

0

=

(
12
5

)
+

(
6
8

)
=

63
20
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2.[9] (a) For what region(s) is
∫

C

~F · d~r is independent of path where

~F =

(
2x
y

)
î +

(
−(x2 + z2)

y2

)
ĵ +

(
2z
y

)
k̂ .

Solution: For the function φ =
x2 + z2

y
, we get that ∇φ = ~F, hence

∫
C

~F ·d~r is

independent of path in any region which does not contain points where y = 0.
Note: This can also be done by showing that ∇ × ~F = ~0

(b) Evaluate
∫

C

~F · d~r where ~F is given in part(a) and C is the curve

x = t2 − 5t + 3,
y = t,
z = t3 − 7t2 + 13t − 9, for 1 ≤ t ≤ 5.

Solution: At t = we have the point (−1, 1,−2).

At t = 5 we have the point (3, 5, 6).

Since
∫

C

~F · d~r is independent of path in a region containing the given curve we

get ∫
C

~F · d~r

=

(
x2 + z2

y

)(3,5,6)

(−1,1,−2)

=

(
(3)2 + (6)2

5

)
−

(
(−1)+(−2)2

1

)
= 9 − 5 = 4
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3.[11] Evaluate the closed line integral


C

~F · d~r where

C is the piecewise smooth curve formed by the curve y = 8− 2x2 from x = −2 to x = 2
and the x-axis from x = 2 to x = −2 and

~F = (x2 sin x4 + 4y cos(xy) + 9x2y2 + 3y− 2xy) î + (y4ey2
+ 4x cos(xy) + 6x3y + 2x + x2) ĵ .

Solution:


C

P dx + Q dy

= −

�
C

P dx + Q dy

Applying Greens Theorem:

= −

"
R
(4 cos xy − 4xy sin xy + 18x2y + 2 + 2x) − (4 cos xy − 4xy sin xy + 18x2y + 3 − 2x)dA

= −

∫ 2

−2

∫ 8−2x2

0
4x − 1 dy dx

= −

∫ 2

−2
[(4x − 1)y]8−2x2

0 dx

= −

∫ 2

−2
(4x − 1)(8 − 2x2) dx

= −

∫ 2

−2
32x − 8x3 − 8 + 2x2 dx

= − [16x2 − 2x4 − 8x +
2
3

x3]2
−2

= − (−16 +
16
3
− 16 +

16
3

) =
64
3
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4.[12] Evaluate the surface integral
"

S

~F · n̂ dS where

~F = (2x3 − 3xy2 + yz2) î + (2y3 − 3x2y + x2z) ĵ + (z + 1)k̂

and S is the portion of the paraboloid z = 16 − 4x2 − 4y2 which lies above the xy-plane
and n̂ is the upward normal to that surface.

Hint: this may be easier with the appropriate application of a particular theorm

Solution:
We use the Divergence theorem on the closed surface S +S 1 where S 1 is the surface
z = 0 in the circle x2 + y2 = 4 (later denoted D) with n̂ = −k̂.
We get: 	

S +S 1

~F · n̂ dS

=

$
V
∇ · ~F dV

=

$
V

(3x2 + 3y2 + 1) dV

Using cylindrical coordinates we get:

=

∫ 2

0

∫ 2π

0

∫ 16−4r2

0
(3r2 + 1)r dz dθ dr

=

∫ 2

0

∫ 2π

0

[
(3r3 + r)z

]16−4r2

0
dθ dr

=

∫ 2

0

∫ 2π

0
(3r3 + r)(16 − 4r2) dθ dr

=

∫ 2

0

∫ 2π

0
(44r3 − 12r5 + 16r) dθ dr

=

∫ 2

0

[
(44r3 − 12r5 + 16r)θ

]2π

0
dr

=2π
∫ 2

0
(44r3 − 12r5 + 16r) dr

=2π
[
11r4 − 2r6 + 8r2

]2

0
dr

=2π(80) = 160π

So
"

S

~F · n̂ dS =

	
S +S 1

~F · n̂ dS −
"

S 1

~F · n̂ dS"
S 1

~F · n̂ dS =

"
S 1

(−z − 1)dS =

"
D

(−1)dA = −

"
1dA = −1(area) = −4π

Finally
"

S

~F · n̂ dS = 160π − (−4π) = 164π .


