
Not the definition of a graph; page 6

A graph is a diagram consisting of points called vertices, joined
by lines, called edges. Each edge joins exactly two vertices.



The definition of a graph; page 26

A graph consists of a set of elements called vertices and a set of
elements called edges. Each edge joins exactly two vertices.



Not the definition of a digraph; page 16

A digraph is a diagram consisting of points called vertices, joined
by directed lines, called arcs. Each arc joins exactly two vertices.



The definition of a digraph; page 85

A digraph consists of a set of elements called vertices and a set
of elements called arcs. Each arc joins two vertices in a specified
direction.



Definition; page 26

In a graph, two or more edges joining the same pair of veritces are
multiple edges. An edge joining a vertex to itself is a loop.

A graph with no multiple edges or loops is a simple graph.



Definition; page 27
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The vertices v and w of a graph are adjacent vertices if they are
joined by an edge e. The vertices v and w are incident with the
edge e, and the edge e is incident with the vertices v and w .



Definition; page 29

Two graphs G and H are isomorphic if H can be obtained by
relabelling the vertices of G - that is, if there is a one-one
correspondence between the vertices of G and those of H, such
that the number of edges joining each pair of vertices in G is equal
to the number of edges joining the corresponding pair of vertices in
H. Such a one-one correspondence is an isomorphism.



Definition; page 33

A subgraph of a graph G is a graph all of whose vertices are
vertices of G and all of whose edges are edges of G .



Definition; page 35

In a graph, the degree of a vertex v is the number of edges
incident with v , with each loop counted twice, and is denoted by
deg v.



Definition; page 36

The degree sequence of a graph G is the sequence obtained by
listing the vertex degrees of G in increasing order, with repeats as
necessary.



Theorem 2.1: Handshaking Lemma; page 37

In any graph, the sum of all of the vertex degrees is equal to twice
the number of edges.



Definition; page 39

A walk of length k in a graph is a succession of k edges of the
form uv , vw , wx , . . . , yz .

This walk is denoted by uvwx . . . yz and is referred to as a walk
between u and z .



Definition; page 40

A trail is a walk in which all of the edges, but not necessairly all of
the vertices, are different.

A path is a walk in which all of the edges and all of the vertices
are different.



Definition; page 41

A graph is connected if there is a path between each pair of
vertices, and is disconnected otherwise.

An edge in a connected graph is a bridge if its removal leaves a
disconnected graph.

Every disconnected graph can be split up into a nuber of
connected subgraphs, called components.



Definition; page 42

A closed walk in a graph is a succession of k edges of the form
uv , vw , wx , . . . , yz , zu; that starts and ends at the same vertex.

A closed trail is a closed walk in which all of the edges are
different.

A cycle is a closed walk in which all of the edges and all of the
intermediate vertices are different.

A walk or a trail is open if it starts and finishes at different
vertices.



Definition; page 43

A graph is regular if its vertices all have the same degree.

A regular graph is r-regular, or regular of degree r , if the degree
of each vertex is r .



Theorem 2.2; page 44

Theorem
Let G be an r-regular graph with n vertices. Then G has nr

2 edges.



Definitions and Notation; page 45

A complete graph is a graph in which each vertex is joined to
each of the others by exactly one edge.
The complete graph with n vertices is denoted Kn.

A null graph is a graph with no edges on n vertices.
The null graph with n vertices is denoted Nn.

A cycle graph is a graph consisting of a single cycle of vertices
and edges.
The cycle graph with n vertices is denoted Cn.



Definition; page 47, 48

A bipartite graph is a graph whose set of vertices can be split into
two subsets A and B in such a way that each edge of the graph
joins a vertex in A and a vertex in B.

A complete bipartite graph is a bipartite graph in which each
vertex in A is joined to each vertex in B by just one edge.
The complete bipartite graph with r vertices in A and s vertices in
B is denoted Kr ,s .



Definition; page 49

A tree is a connected graph with no cycles.

In a tree, there is just one path between each pair of vertices.



Definition; page 50

A path graph is a tree consisting of a single path through all of its
vertices.
The path graph with n vertices is denoted Pn.

A k-cube or k-dimensional cube is the graph obtained from
labelling the vertices with binary words of length k , and joining two
vertices with an edge if the words differ in one place.
The k-cube is denoted Qk .



Definition and Notation; page 58

The complement G of a simple graph G is obtained by taking the
vertices of G and joining two of them whenever they are not joined
in G .



Homework, Chapter 2

Problems: 2.1 – 2.25

Exercises: 2.2,
2.4, 2.5 and 2.6,
2.8, 2.9,
2.10, 2.11, 2.12 (Important definition), (2.13), 2.14, (2.15),
2.16, 2.17, a solution to one of Game 1, 1A, 2, 3,
2.18, 2.19, 2.20 (Note the typo, it should read - ... even number of
negative edges.)

F – (...) – recommended.



Definitons; page 63

A connected graph is Eulerian if it contains a closed trail that
includes every edge; such a trail is an Eulerian trail.

A connected graph is Hamiltonian if it contains a cycle that
includes every vertex; such a trail is an Hamiltonian cycle.



Theorem 3.1, 3.2, 3.3; page 64, 65

Theorem
Let G be a graph in which each vertex has even degree. Then G
can be split into cycles, no two of which have an edge in common.

Theorem
A connected graph is Eulerian if and only if each vertex has even
degree.

Theorem
An Eulerian graph can be split into cycles, no two of which have
an edge in common.



Definition, Theorem 3.4; page 67

A connected graph is semi-Eulerian if there is an open trail that
includes every edge; such a trail is a semi-Eulerian trail.

Theorem
A connected graph is semi-Eulerian if and only if it has exactly two
vertices of odd degree.



Theorem 3.5; page 73

Theorem (Ore’s Theorem)

Let G be a simple connected graph with n vertices, where n ≥ 3
and

degv + degw ≥ n

for each pair of non-adjacent vertices v and w. Then G is
Hamiltonian.



Definiton; page 74

A connected graph is semi-Hamiltonian if there is a path, but not
a cycle, that includes every vertex; such a path is a
semi-Hamiltonian path



Homework Chapter 3

Problems: 3.1 – 3.15

Exercises: 3.1, 3.2, 3.2,
3.4, 3.5, 3.6, 3.7
(3.8, 3.9,), 3.10, 3.11

F – (...) – recommended.



The definition of a digraph; page 85

A digraph consists of a set of elements called vertices and a set
of elements called arcs. Each arc joins two vertices in a specified
direction.



Definition; page 85

In a digraph, two or more arcs joining the same pair of vertices in
the same direction are multiple arcs. An arc joining a vertex to
itself is a loop.

A digraph with no multiple arcs or loops is a simple digraph.



Definition; page 86

-r r
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e

The vertices v and w of a digraph are adjacent vertices if they are
joined (in either direction) by an arc e. An arc e that joins v to w
is incident from v and incident to w ; v is incident to e and w
is incident from e



Definition; page 87

Two digraphs C and D are isomorphic if D can be obtained by
relabelling the vertices of C - that is, if there is a one-one
correspondence between the vertices of C and those of D, such
that the arcs joining each pair of vertices in C agree in both
number and direction with the arcs joining to corresponding
vertices in D.



Definition; page 90

A subdigraph of a digraph D is a digraph all of whose vertices are
vertices of D and all of whose arcs are arcs of D.



Definiton; page 92

The underlying graph of a digraph D is the graph obtained by
replacing each arc of D by the corresponding undirected edge.



Definition; page 92

In a digraph, the out-degree of a vertex v is the number of arcs
incident from v , and is denoted by outdeg v; the in-degree of a
vertex v is the number of arcs incident to v , and is denoted by
indeg v;



Definition; page 93

The out-degree sequence of a digraph D is the sequence obtained
by listing the out-degrees of D in increasing order, with repeats as
necessary. The in-degree sequence is defined analgously.



Theorem 4.1; page 94

Theorem (Handshaking Dilemma)

In any digraph, the sum of all the out-degrees and the sum of all
the in-degrees are both equal to the number of arcs.



Definition; page 95

A walk of length k in a digraph is a succession of k arcs of the
form uv , vw , wx , . . . , yz .
This walk is denoted by uvwx . . . yz and is referred to as a walk
between u and z .

A trail is a walk in which all of the arcs, but not necessairly all of
the vertices, are different.

A path is a walk in which all of the arcs and all of the vertices are
different.



Definition; page 95

A closed walk in a digraph is a succession of k arcs of the form
uv , vw , wx , . . . , yz , zu; that starts and ends at the same vertex.

A closed trail is a closed walk in which all of the arcs are different.

A cycle is a closed trail in which all of the intermediate vertices
are different.



Definition

A digraph is connected if its underlying graph is a connected
graph, and it is disconnected otherwise.

A digraph is strongly connected if there is a path between each
pair of vertices.



Definitons; page 97

A connected digraph is Eulerian if it contains a closed trail that
includes every arc; such a trail is an Eulerian trail.

A connected digraph is Hamiltonian if it contains a cycle that
includes every vertex; such a cycle is an Hamiltonian cycle.



Theorem 4.2, 4.3; page 99

Theorem
A connected digraph is Eulerian if and only if, for each vertex, the
out-degree equals the in-degree.

Theorem
An Eulerian digraph can be split into cycles, no two of which have
an arc in common.



Homework Chapter 4

Problems: 4.1 – 4.15, 4.17 – 4.19

Exercises: 4.1, 4.2, 4.2,
4.4, 4.5, 4.6,
4.7, 4.8, 4.9, (4.10)
4.11, 4.12
4.14, 4.15, 4.16. 4.17

F – (...) – recommended.



Definition; page 113

Let G be a graph with n vertices labelled 1, 2, 3, . . . , n.
The adjacency matrix A(G) of G is the n × n matrix in which
the entry in row i and column j is the number of edges joining the
vertices i and j .



Definition; page 115

Let D be a digraph with n vertices labelled 1, 2, 3, . . . , n.
The adjacency matrix A(D) of D is the n × n matrix in which
the entry in row i and column j is the number of arcs from the
vertex i to the vertex j .



Theorem 5.1; page 118

Let D be a digraph with n vertices labelled 1, 2, 3, . . . , n, let A
be its adjacency matrix with respect to this listing of the vertices,
and let k be any positive integer.
Then the number of walks of length k from vertex i to vertex j is
equal to the entry in row i and column j of the matrix Ak (the kth
power of the matrix A).



Theorem 5.2; page 119

Let D be a digraph with n vertices labelled 1, 2, 3, . . . , n, let A
be its adjacency matrix with respect to this listing of the vertices,
and let B be the matrix

B = A + A2 + . . .+ An−1

Then D is strongly connected if and only if each non-diagonal
entry in B is positive - that is bij > 0 whenever i 6= j .



Definition; page 123

Let G be a graph without loops, with n vertices labelled
1○, 2○, . . . , n○ and m edges labelled 1, 2, . . . ,m

The incidence matrix I(G) of G is the n ×m matrix in which the
entry in row i and column j is

I 1 if the vertex i is incident with the edge j

I 0 otherwise.



Definition; page 125

Let D be a digraph without loops, with n vertices labelled
1○, 2○, . . . , n○ and m edges labelled 1, 2, . . . ,m

The incidence matrix I(D) of D is the n ×m matrix in which the
entry in row i and column j is

I 1 if arc j is incident from vertex i

I -1 if arc j is incident to vertex i

I 0 otherwise.



Homework Chapter 5

Problems:
5.1 – 5.12, 5.14

Exercises:
5.1, 5.2, 5.3, 5.4
5.5, 5.6, 5.7, 5.8
5.9, 5.10, 5.11
5.14, 5.15



Theorem 6.1; page 143

Theorem (Equivalent Definitions of a Tree)

Let T be a graph with n vertices. Then the following statements
are equivalent.

I T is connected and has no cycles.

I T has n − 1 edges and has no cycles.

I T is connected and has n − 1 edges.

I T is connected and teh removal of any edge disconnects T .

I Any two vertices of T are connected by exactly one path.

I T contains no cycles, but the addition of any new edge
creates a cycle.



Definition; page 144

Let G be a connected graph. Then a spanning tree in G is a
subgraph that includes every vertex and is also a tree.



Rigidity Criterion; page 154

If a braced rectangular framework, with rows r1, r2, r3, . . . , and
columns c1, c2, c3, . . . , is rigid, then the braces must be located
such that, under any attempted deformation of the framework,

I ri remains parallel to rj , for all ri and rj .

I ci remains parallel to cj , for all ci and cj .

I ri remains perpendicular to cj , for all ri and cj .



Bracings; page 157, 158

A braced rectangular framework is rigid if and only if its associated
bipartite graph is connected.

A given bracing of a rectangular framework is not a minimum
bracing if the associated bipartite graph has either of the following
properties:

I the graph has n vertices and more then n − 1 edges;

I the graph contains a cycle.



Homework Chapter 6

Problems:
6.1 – 6.7, (6.8 – 6.9), 6.10 – 6.11

Exercises:
6.1,
6.3, 6.4,
(6.7)
6.8, 6.9, 6.10, 6.11



Construction of a Prüfer sequence; page 165

I Find the vertices of degree 1 and choose the one with the
smallest label.

I Look at the vertex adjacent to the one just chosen and place
its label in the first available position in the Prüfer sequence.

I Remove the vertix chosen in Step 1 and its incident edge,
leaving a smaller tree.

Repeat for the remaining tree, continuing until there are only two
vertices left. Then STOP; the required Prüfer sequence has been
constructed.



Construct a labelled tree from a Prüfer sequence; page 167

I Draw the n vertices, labelling them from 1 to n, and list the
integers from 1 to n

I Find the smallest number that is in the list but not in the
Prüfer sequence, and also find the first number in the
sequence; then add an edge joining the vertices with these
labels.

I Remove the first number found in the last step from the list
and the second number found from the sequence, leaving a
smaller list and smaller sequence.

Repeat the last two steps for the remaining list and sequence,
continuing until there are only two terms left in the list. Join the
vertices with these labels and STOP; the required labelled tree has
been constructed.



Theorem 7.1; page 170

Theorem (Cayley’s Theorem)

The number of labelled trees with n vertices is nn−2.



Definition; page 179

What is the ’middle’ of a tree?

Repeatedly remove the vertices of degree 1.

If what remains is a single vertex, then that vertex is the centre of
the tree.
If two adjacent vertices remain, then those two vertices are the
bicentre of the tree.

A tree with a center is a central tree, a tree with a bicenter is a
bicentral tree.



Definition; not in book

An alternate definition of ’middle’ of a tree.

For every vertex v of degree 2 or more, count the number of
vertice in each subtree along each of the edges joining the vertex
v . Let nv be the maximum of those numbers.

For a tree with n vertices:
If one vertex v has nv ≤ 1

2(n − 1) then v is the centroid.
If two adjacent vertices nv = nw = 1

2n then vw is the bicentroid.



Homework Chapter 7

Problems:
7.1 – 7.6, (7.7 – 7.8), 7.9 – 7.12

Exercises:
7.1 – 7.5
(7.6)
7.7–7.9



Definition; page 183

Let T be a spanning tree of minimum total weight in a connected
graph G . Then T is a minimum spanning tree or a minimum
connector in G .

The Minimum connector problem is: Given a weighted
graph, find a minimum spanning tree.



Kruskal’s Algorithm; page 184

Start with a finite set of vertices, where each pair of vertices is
joined by a weighted edge.

I List all the weights in ascending order.

I Draw the vertices and weighed edges corresponding to the
first weight in the list, provided that, in so doing, no cycle is
formed. Delete the weight from the list.

Repeat the second step untal all the verices are connected, and
then stop.
The weighted graph obtained is a miminum connector, and the
sum of the weights on its edges is the total weight of the minimum
connector.



Prim’s Algorithm; page 188

Start with a finite set of vertices, where each pair of vertices is
joined by a weighted edge.

I Choose and draw any vertex

I Find the edge of least weight joining a drawn vertex to a
vertex not currently drawn. Draw this weighted edge and the
corresponding new vertex.

Repeat the second step until all the vertices are connected, then
stop



Theorem 8.1; page 190

Theorem
Prim’s and Kruskal’s algorithm always produce a spanning tree of
minimum weight.



Travelling Salesman Problem; page 191

The Travelling Salesman problem is: Given a weighted
complete graph, find a minimum-weight Hamiltonian cycle.



Travelling Salesman Problem - Upper Bound; page 192

Start with a finite set of vertices, where each pair of vertices is
joined by a weighted edge.

I Choose any vertex and find a vertex joined to it by an edge of
minimum weight. Draw these two vertices and join them with
two edges to form a cycle; give the cycle a clockwise
orientation.

I Find a vertex not currently drawn joined by an edge of least
weight to a vertex already drawn. Insert this new vertex into
the cycle in front of the nearest already-connected vertex.

Repeat the second step until all of the vertices are joined by a
cycle, then stop.
The weighted cycle obtained is a Hamiltonian cycle, and its total
weight - given by the sum of the weights on its edges - is an upper
bound for the solution to the travelling salesman problem.



Travelling Salesman Problem - Lower Bound; page 196

I Choose any vertex v and remove it from the graph.

I Find a minimum spanning tree connecting the remaining
vertices, and calculate its total weight w .

I Find the two smallest weights, w1 and w2, of the edges
incident with v .

I Calculate the lower bound w + w1 + w2.



Homework Chapter 8

Problems:
8.1 – 8.5

Exercises:
8.1 – 8.6
8.7–8.15



Fleury’s Algorithm; page 203

Start with an Eulerian graph G

I Choose a starting vertex

I Starting from the current vertex, traverse any available edge,
choosing a bridge only if there is no alternative. Then erase
that edge and any isolated vertex.

Repeat the second step until there are no more edges, then stop.



Shortest Path Algorithm; page 211

Start Assign a potential of 0 to the start vertex S .

General Step Consider the vertex (or vertices) just assigned a
potential. For each such vertex v , consider each vertex w that can
be reached from v along an arc vw , and assign w the label
(potential of v) + (distance vw)
unless w already has a smaller label assigned from an earlier
iteration.
When all such vertices w have been labelled, choose the smallest
vertex label that is not already a potential, and make it a potential
at each vertex where it occurs.



Shortest Path Algorithm Continued; page 211

Repeat the general step with the new potential.

Stop when the terminal vertex T has been assigned a potential.

To find a shortest path, trace backwards from T and include an
arc vw whenever
(potential of w) - (potential of v) = distance vw
until S is reached.



Longest Path Algorithm

Start Assign a potential of 0 to the start vertex S ; label each
vertex v reached only from S with the distance from S to v and
make all these labels potentials.

General Step Consider all vertices which can be reached only
from vertices of known potential. For each such vertex w that can
be reached from v along an arc vw , and assign w the label
(potential of v) + (distance vw)
unless w already has a larger label;
When all such arcs vw have been considered make the label at w a
potential.



Longest Path Algorithm Continued

Repeat the general step with the new potentials.

Stop when the terminal vertex T has been assigned a potential;
this is the longest distance from S to T

To find a longest path, trace backwards from T and include an arc
vw whenever
(potential of w) - (potential of v) = distance vw
until S is reached.



Scheduling

Consider S the start of a project, and T denotes the termination of
the project.

The vertices represent intermediate stages, or events. The arcs
represent activities, and the weight of the arc represents the time
needed to carry out the activity.

The length of the longest path represents the amount of time
needed to complete the project. The arcs on the longest path need
to be completed on time, and hence it is known as a critical path.



Scheduling Continued

The earliest start time for an activity XY is the length of the
longest path from S to X .
(This is the potential assigned to X in the longest path algorithm)

The latest start time for an activity XY is
(total time for the project) - (length of the longest path from X to
T via XY )

The float time for an activity is the difference between the earliest
and latest start times.
(The float time for any activity on a critical path is zero (0) ).



Chinese Postman Problem; page 212

The Chinese Postman problem is: Find a closed walk of
minimum total weight that includes every edge at least once.



Homework Chapter 9

Problems:
9.1, 9.2 (do longest path & scheduling as well), 9.3

Exercises:
9.1 – 9.2
9.3– 9.5
Find longest path and schedule the graphs for 9.3– 9.5
9.6–9.7



Definitions; page 217

A graph is connected if there is a path between each pair of
vertices, and is disconnected otherwise.

Every disconnected graph can be split up into a number of
connected subgraphs, called components

A digraph is connected if its underlying graph is a connected
graph, and it is disconnected otherwise.

A digraph is strongly connected if there is a path between each
pair of vertices.



Definition; page 219

The edge connectivity λ(G ) of a connected graph G is the
smallest number of edges whose removal disconnects G .



Definition; page 220

A cutset of a connected graph G is a set S of edges with the
following two properties:

I removal of all the edges of S disconnects G .

I removal of some but not all of the edges in S does not
disconnect G .



Definition; page 222, 223

The connectivity (or vertex connectivity) κ(G ) of a connected
graph G (other than a complete graph) is the smallest number of
vertices whose removal disconnects G .

The connectivity κ(Kn) of the complete graph Kn is n − 1.



Definition; page 223

A vertex cutset of a connected graph G is a set S of vertices with
the following two properties:

I removal of all the vertices of S disconnects G .

I removal of some but not all of the vertices in S does not
disconnect G .



Theorem 10.1; page 224

Theorem
Let G be a connected graph with smallest vertex degree δ(G ).
Then

κ(G ) ≤ λ(G ) ≤ δ(G ) .



Definition; page 226

Let G be a connected graph, and let s and t be vertices of G .

A path between s and t is an st-path.

Two or more st-paths are edge-disjoint if they have no edges in
common, and vertex-disjoint if they have no vertices in common,
other than s and t.



Definition; page 227

Let G be a connected graph, and let s and t be vertices of G .

Certain edges separate s from t if the removal of these edges
destroys all paths between s and t.

Certain vertices separate s from t if the removal of these vertices
destroys all paths between s and t.



Theorem 10.2; page 229

Theorem (Menger’s Theorem for Graphs (Edge Form))

Let G be a connected graph, and let s and t be vertices of G .
Then the maximum number of edge-disjoint st-paths is equal to
the minimum number of edges separating s from t.



Corollary; page 230

Corollary (of Menger’s Theorem for Graphs - Edge Form)

A connected graph has edge connectivity ` if and only if there are `
or more edge-disjoint paths between each pair of vertices in G , and
there are exactly ` edge-disjoint paths between at least one pair of
vertices.



Definition; page 237

The average of the vertex degrees is 2E
V .

A graph G is said to have optimal connectivity if

κ(G ) = λ(G ) = δ(G ) = 2E
V .

Since κ(G ) ≤ λ(G ) ≤ δ(G ) ≤ 2E
V , it is enough to show that

κ(G ) = 2E
V .



Homework Chapter 10

Problems:
10.1 – 10.7, 10.11 – 10.12

Exercises:
10.1 – 10.3
10.4
10.6–10.8

Note: in 10.6; Links are edges, and exchanges are vertices.



Definition; page 244

A graph G is planar if it can be drawn in the plane in such a way
that no two edges meet except at a vertex with which they are
both incident. Any such drawing is called a planar drawing of G

A graph G is non-planar if no plane drawing of G exists.



Definition; page 248

Let G be a planar graph. Then any plane drawing of G divides the
set of points of the plane not lying on G into regions, called faces;
one face is of infinite extent and is the infinite face.



Definition; page 249

Let G be a connected planar graph, and let f be any face of a
plane drawing of G . Then the degree of f , denoted by deg f , is
the number of edges encountered in a walk around the boundary of
the face f .

If all faces have the same degree g ,then G is face-regular of
degree g .



Theorem 11.1; page 249

Theorem (Handshaking Lemma for Planar Graphs)

In any plane drawing of a planar graph, the sum of all the face
degrees is equal to twice the number of edges.



Theorem 11.2; page 251

Theorem (Euler’s Formula for Planar Graphs)

Let G be a connected planar graph, and let n, m, and f denote,
respectively, the number of vertices, edges and faces in a plane
drawing of G . Then

n −m + f = 2

Also known as
V − E + F = 2



Corollary 11.1, 11.2, 11.3; page 253, 254, 255

Corollary

Let G be a simple connected planar graph with V (≥ 3) vertices
and E edges. Then E ≤ 3V − 6

Corollary

Let G be a simple connected planar graph with V (≥ 3) vertices
and E edges and no triangles. Then E ≤ 2V − 4

Corollary

Let G be a simple connected planar graph. Then G contains a
vertex of degree 5 or less.



Theorem 11.3; page 261

Theorem (Kuratowski’s Theorem)

A graph is planar if and only if it contains no subdivision of K5 or
K3,3.



Theorem 11.4; page 262

Theorem
A graph is planar if and only if it contains no subgraph that has K5

or K3,3 as a contraction.



Definition; page 264

Let G be a connected planar graph. Then a dual graph G ∗ is
constucted from a planar drawing of G as follows.

Draw one new vertex in each face of the plane drawing: these are
the vertices of G ∗.

For each edge e of the plane drawing, draw a line joining the
vertices of G ∗ in the faces on either side of e; these lines are the
edges of G ∗.



Theorem 11.5; page 266

Theorem
Let G be a plane drawing of a connected planar graph with V
vertices, E edges and F faces.
Then G ∗ has F vertices, E edges and V faces.



Correspondence between G and G ∗; page 267

plane drawing of G dual graph G ∗

an edge of G an edge of G ∗

a vertex of degree k in G a face of degree k in G ∗

a face of degree k in G a vertex of degree k G ∗

a cycle of length k in G a cutset of G ∗ with k edges

a cutset of G with k edges a cycle of length k in G ∗



Theorem 11.6, 11.7; page 268

Theorem
Let G ∗ be a connected planear graph with F faces and E edges,
and with no cutsets with 1 or 2 edges.
Then E ≤ 3F − 6

Theorem
Let G ∗ be a connected planear graph with no cutsets with 1 or 2
edges. Then G ∗ has a face of degree 5 or less.



Definition; page 269

A regular polyhedron is a convex polyhedron in which all of the
polygonal faces are congruent regular polygons, and each vertex
has exactly the same arrangement of polygons around it.



Theorem 11.8 ; page 270

Theorem (Euler’s Polyhedron Formula)

Let V , E and F denote, respectively, the numbers of vertices,
edges and faces of a convex polyhedron. Then

V − E + F = 2



Theorem 11.9 ; page 271

Theorem (Handshaking Lemma for Polyhedra)

In any polyhedron, the sum of all the faces degrees is equal to
twice the number of edges.



Theorem 11.10 ; page 272

Theorem
There are only five regular polyhedra.

The five regular polyhedra are :

the tetrahedron having 4 triangular faces,
the cube having 6 square faces,

the octagon having 8 triangular faces,
the dodecahedron having 12 pentagonal faces,

the icosahedron having 20 triangular faces.



Homework Chapter 11

Problems:
11.1 – 11.20

Exercises:
11.1 – 11.2
11.3– 11.9
11.11
11.12– 11.14
(11.16– 11.17)



matchings

A matching is a mapping from some elements to some other
elements, and a matching is stable whenever there is no element A
of the first matched set that prefers an element B (that it’s not
matched to) of the second matched set, and at the same time B
also prefers A over the one B is matched with.



Gale-Shapely Algorithm

I The Gale-Shapley algorithm involves a number of ’rounds’
where each un-sudo-matched element in set A ”proposes” to
the most-preferred element in set B to whom he has not yet
proposed.

I Each element in set B then considers all their proposals and
tells the one he/she most prefers ”Maybe” and all the rest of
them ”No”.

I The element in set A that got the maybe is now
sudo-matched to the element in set B.



Gale-Shapely Algorithm

I In each subsequent round, each un-sudo-matched element in
set A proposes to the most-preferred element in set B to
whom he has not yet proposed (the element may or may not
already be sudo-matched),
and the element in set B once again reply with one ”maybe”
to the most-preferred suitor and reject the rest (including for
consideration her current sudo-match).
This may mean that already sudo-matched elements in set B
can ”trade up”, and already-sudo-matched elements in set A
can be ”jilted”.

I Once every element in set A is sudo-matched, then that is
now the matching.



Definition; page 279

Let G be a simple graph. A k-colouring of G is an assignment of
at most k colours to the vertices of G in such a way that adjacent
vertices are assigned different colours. If G has a k-colouring, then
G is k-colourable.

The chromatic number of G , denoted χ(G ), is the smallest
number k for which G is k-colourable.



Theorem; page 281

Let G be a simple graph whose maximum vertex degree is d .

Then χ(G ) ≤ d + 1.



Brooks’ Theorem; page 282

Let G be a simple graph whose maximum vertex degree is d .

If G is neither a cycle graph with an odd number of vertices, nor a
complete graph, then χ(G ) ≤ d .



Theorem; page 284

The vertices of any simple connected planar graph G can be
coloured with six (or fewer) colours in such a way that adjacent
vertices are coloured differently.



Theorem; page 285

The vertices of any simple connected planar graph G can be
coloured with five (or fewer) colours in such a way that adjacent
vertices are coloured differently.



Four Colour Theorem; page 288

The vertices of any simple connected planar graph G can be
coloured with four (or fewer) colours in such a way that adjacent
vertices are coloured differently.



Definition; page 304

Let G be a graph without loops. A k-edge colouring of G is an
assignment of at most k colours to the edges of G in such a way
that any two edges meeting at a vertex are assigned different
colours. If G has a k-edge colouring, then G is k-edge colourable.

The chromatic index of G , denoted χ′(G ), is the smallest number
k for which G is k-edge colourable.



Vising’s Theorem; page 307

Let G be a simple graph whose maximum vertex degree is d .

Then d ≤ χ′(G ) ≤ d + 1.



Vising’s Theorem (Extended version); page 307

Let G be a graph whose maximum vertex degree is d , and let h be
the maximum number of edges joining a pair of vertices.

Then d ≤ χ′(G ) ≤ d + h.



Greedy algorithm for vertex colouring; page 288

I Start with a Graph G and a list of colours 1, 2, 3, . . ..

I Label the vertices a, b, c , . . . in any manner.

I Identify the uncoloured vertex labelled with the earliest letter
in the alphabet; colour it with the first colour in the list not
used for any adjacent coloured vertex.



Greedy algorithm for edge colouring; page 313

I Start with a Graph G and a list of colours 1, 2, 3, . . ..

I Label the edges a, b, c , . . . in any manner.

I Identify the uncoloured edge labelled with the earliest letter in
the alphabet; colour it with the first colour in the list not used
for any coloured edge that meets it at a vertex.


