Fibonacci Numbers: The Classic Problem (page 25)

A certain man puts a pair of rabbits in a place surrounded on all sides by a wall. How many pairs of rabbits can be produced from that pair in a year if it is supposed that every month each pair begets a new pair, which from the second month become productive?

Fibonacci rabbits, the first few months

 1^{st} month

2nd month

3rd month

4th month

5th month

Fibonacci Numbers

Let f_n be the number of pairs of rabbits after n months.

Fibonacci Numbers

The Fibonacci Numbers are the numbers in the sequence defined by

$$f_1 = 1$$
 $f_2 = 1$

$$f_n = f_{n-1} + f_{n-2}$$

Binet's formula for Fibonacci numbers

$$f_n = \frac{(1+\sqrt{5})^n - (1-\sqrt{5})^n}{2^n \sqrt{5}}$$

Given that $f_{19} = 4181$ and $f_{16} = 987$, what are f_{17} and f_{18} ?

Ratios of Fibonacci Numbers

$$\frac{f_{2}}{f_{1}} = \frac{f_{6}}{f_{5}} = \frac{f_{6}}{f_{5}} = \frac{f_{7}}{f_{6}} = \frac{f_{7}}{f_{6}} = \frac{f_{8}}{f_{7}} = \frac{f_{8}}{f_{4}} = \frac{f_{9}}{f_{8}} = \frac{f_{9}}{$$

Fibonacci Spiral

