MATH 2500 Assignment #2

Due: October 12, 2012, Before Class (9:30)

Reminder: all assignments must be accompanied by an honesty declaration available on my website.

- 1. For each of the following linear Diophantine equations, find all integer solutions for x and y:
 - (a) 1785x + 5572y = 28
 - (b) 4029x + 4473y = 22
 - (c) 803x + 5854y = 3
- 2. For each of the following linear modular congruences, find all solutions:
 - (a) $214x \equiv 33 \pmod{465}$
 - (b) $1841x \equiv 27 \pmod{6426}$
 - (c) $64x \equiv 28 \pmod{276}$
 - (d) $329x \equiv 38 \pmod{5645}$
- 3. For each of the following systems of linear modular congruences, find all solutions: (solutions for these should be least residues (mod $m_1 \cdot m_2 \cdots m_k$).)
 - (a) $x \equiv 6 \pmod{13}$
 - $x \equiv 3 \pmod{7}$
 - $x \equiv 12 \pmod{38}$
 - (b) $x \equiv 46 \pmod{117}$
 - $x \equiv 7 \pmod{91}$
 - (c) $x \equiv 22 \pmod{51}$
 - $x \equiv 54 \pmod{119}$
- 4. If $1862 \equiv 2863 \pmod{m}$ is a true statement, then what are the possible values of m?
- 5. For each of the statements, if the statement is true, then prove it; if the statement is not true, give a counterexample.
 - (a) If $a \equiv b \pmod{m}$ then $a^2 \equiv b^2 \pmod{m^2}$.
 - (b) If d|m and $a \equiv b \pmod{m}$, then $a \equiv b \pmod{d}$.
 - (c) If $a^2 \equiv b^2 \pmod{p}$, then $a \equiv b \pmod{p}$, where p is a prime.