MATH 2500 Assignment #3

Due: October 31, 2012, Before Class (9:30)

Reminder: all assignments must be accompanied by an honesty declaration available on my website.

- 1. Find the least residue of the given expression in the given modulus
 - (a) $222 \cdot 221 \cdots 109 \cdot 108 \cdot 106 \cdot 105 \cdots 2 \cdot 1$ in (mod 223)
 - (b) 13^{1138} in (mod 227)
 - (c) $892 \cdot 891 \cdots 107 \cdot 106 \cdot 104 \cdot 103 \cdots 2 \cdot 1$ in (mod 893)
 - (d) 12^{5043} in (mod 1001)
 - (e) 5^{70699} in (mod 6427)
 - (f) $466 \cdot 465 \cdot \cdot \cdot 9 \cdot 8 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$ in (mod 467)
 - (g) 7^{11045} in (mod 2867)
- 2. For each of the following, find d(n) and $\sigma(n)$
 - (a) 35880
 - (b) 5852
 - (c) 273 798
 - (d) 20 020.
- 3. Find the first 5 (if they exist) elements of the aliquot sequence of the following:
 - (a) 5564
 - (b) $1305184 = 2^5 \times 40787$
 - (c) 6427
 - (d) 864
- 4. Show that:
 - (a) 8 128 is perfect.
 - (b) 672 is 3-perfect.
 - (c) 32 760 is 4-perfect.
 - (d) 6232 is one of an amicable pair, and find the other number in the pair.
- 5. Suppose n is an odd perfect number such that (n,3) = 1, show that 6n is a k-perfect number, and find k.