MATH 2500 Assignment #4

Due: November 28, 2012, Before Class (9:30)

Reminder: all assignments must be accompanied by an honesty declaration available on my website.

- 1. (a) How many primitive roots does 53 have?
 - (b) What are the possible orders of an element modulo 53?
 - (c) Show that 2 is a primitive root of 53.
 - (d) Find 7 other primitive roots. (Note, these should be in least residue.)
 - (e) What is the order of 16 (mod 53)? Of 32 (mod 53)? Of $11 \equiv 64$ (mod 53)?
- 2. Which of the following quadratic congruences have solutions? (You do NOT need to find solutions if they exist.)
 - (a) $x^2 + 9x + 13 \equiv 0 \pmod{43}$
 - (b) $9x^2 + 7x + 6 \equiv 0 \pmod{73}$
 - (c) $17x^2 + 11x + 1 \equiv 0 \pmod{67}$
- 3. Solve the following Legendre symbols:
 - (a) $\left(\frac{4158}{6421}\right)$
 - (b) $\left(\frac{17924}{8963}\right)$
 - (c) $\left(\frac{3371}{9043}\right)$
- 4. Which of 2, 3, 4, 5 are primitive roots of 3467? [Hint: Consider Euler's Criterion.]
- 5. (a) Show that if g and h are primitive roots of an odd prime p, and $g = h^k$, then k is odd.
 - (b) Show that if g and h are primitive roots of an odd prime p then gh is not a primitive root.