MATH 2130 Tutorial 2

1. Find the equation of the plane that contains

$$2x + 3y + 4z = 6$$
, $x - 2y + z = 3$ and $\frac{2x - 1}{22} = \frac{y + 2}{2} = \frac{1 - z}{7}$.

2. Find equations for the line perpendicular to the plane x + 5y - 2z = 6 and through the point of intersection of the lines

$$x = 2 + 3t$$
, $y = 1 - t$, $z = 4 + 2t$; $x = -1 + s$, $z + 3s$, $z = 2 + 2s$.

- **3.** Find equations for the line that is perpendicular to both the y-axis and the line x y = 2, 3y + 4z = 6, and intersects the z-axis at a point $\sqrt{11}$ units from the point (1, -1, 2).
- **4.** Find the equation of the plane that contains the points (2, -1, 3) and (1, 1, 4) and the line 2x 3y + z = 3, x + 5y z = 2.
- 5. Find the distance from the point (3, -1, 5) to the line x = 2 + 3t, y = 2t 1, z = 4 + t.
- **6.** Find the distance between the planes x = 2y 3z + 1 and 3x 6y + 9z = 4.
- 7. Find the distance between the lines y = 2x + 3z 4, 3x + y 2z = 6, and x = 2 + t, y = 3 2t, z = 1 + t.
- 8. Find equations for the planes that are 2 units apart, equidistant from the point (1, -1, 2) and parallel to the plane x + 2y 5z = 6.

Answers:

1.
$$24x - 13y + 34z = 72$$

2.
$$x = -1 + u$$
, $y = 2 + 5u$, $z = 2 - 2u$

3.
$$x = 3t$$
, $y = 0$, $z = -1 + 4t$; or, $x = 3t$, $y = 0$, $z = 5 + 4t$

4.
$$23x + 11y + z = 38$$

5.
$$\sqrt{6/7}$$
 6. $1/(3\sqrt{14})$ **7.** $1/\sqrt{14}$ **8.** $x + 2y - 5z = -11 \pm \sqrt{30}$