MATH 2500 Assignment #3

Due: March 4, 2012, Before Class (12:30)

Reminder: all assignments must be accompanied by a signed copy of the honesty declaration available on my website.

Assignments are to be handed in on $8\frac{1}{2} \times 11$ paper, single sided, no ragged edges, stapled in the top left hand corner with the honesty declaration as the first page.

- 1. Find the least residue of the given expression in the given modulus. Name any theorem you may use.
 - (a) $1152 \cdot 1151 \cdot 1150 \cdots 109 \cdot 108 \cdot 105 \cdot 104 \cdots 3 \cdot 2 \cdot 1 \pmod{1153}$ (Note: This is all factors of 1152! except 107 and 106.)
 - (b) $13^{56162} \pmod{1147}$
 - (c) $1072 \cdot 1071 \cdot 1070 \cdots 533 \cdot 532 \cdot 530 \cdot 529 \cdots 3 \cdot 2 \cdot 1 \pmod{1073}$ (Note: This is all factors of 1072! except 531.)
 - (d) $6^{49144} \pmod{1171}$
 - (e) $5^{50008} \pmod{1283}$
 - (f) $1068 \cdot 1067 \cdot 1066 \cdot \cdot \cdot 7 \cdot 6 \cdot 5 \pmod{1069}$ (Note: This is all factors of 1068! except 4, 3, 2 and 1.)
 - (g) $7^{61603} \pmod{1121}$.
- 2. For each of the following, find d(n), $\sigma(n)$ and $\phi(n)$:
 - (a) 205821
 - (b) 29766
 - (c) 3577392.
- 3. Decide if:
 - (a) 33550336 is perfect.
 - (b) 523776 is k-perfect (if so,find the value of k).
 - (c) 5020 is one of an amicable pair, and if so find the other number in the pair.
 - (d) The aliquot sequence of the number 12496 repeats with a period of 5.
- 4. Suppose n is an 4-perfect number and (n, 40) = 1. Is 40n k-perfect number? If so, for what k?
- 5. Show that, for $n \geq 2$, the sum of all numbers less than n and relatively prime to n is equal to $\frac{\phi(n) \cdot n}{2}$.