MATH 2130 Tutorial 6

- 1. For what value(s) of the constant b is the function $f(x,y)=e^{bx}\cos 5y$ harmonic in the entire xy-plane?
- **2.** You are told that z = f(u, v, t), u = g(x, y, t), v = h(x, y, t), and y = k(t). What is the chain rule for $\frac{\partial z}{\partial t}$?
- **3.** If u = f(v), v = g(x, y, z), x = h(s, t), y = k(s, t), and z = m(t), find the chain rule for $\frac{\partial u}{\partial t}$.
- **4.** If f(s) and g(t) are differentiable functions, show that $\nabla f(x^2 y^2) \cdot \nabla g(xy) = 0$.
- **5.** If $z = x^2 + y^2$, $x = u \cos v$, and $y = u \sin v$, find and simplify $\frac{\partial^2 z}{\partial v^2}\Big|_{u}$.
- **6.** If f(v) is differentiable, show that $u(x,y) = x^3 f(x/y)$ satisfies the equation

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 3u.$$

7. If z = f(u, v), u = g(x, y), and v = h(x, y), find the chain rule for $\frac{\partial^2 z}{\partial x^2}\Big)_y$.

Answers:

- 1. ± 5
- $\mathbf{2.} \ \frac{\partial z}{\partial u} \frac{\partial u}{\partial y} \frac{dy}{dt} + \frac{\partial z}{\partial u} \frac{\partial u}{\partial t} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial y} \frac{dy}{dt} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial t} + \frac{\partial z}{\partial t}$
- 3. $\frac{du}{dv}\frac{\partial v}{\partial x}\frac{\partial x}{\partial t} + \frac{du}{dv}\frac{\partial v}{\partial y}\frac{\partial y}{\partial t} + \frac{du}{dv}\frac{\partial v}{\partial z}\frac{dz}{dt}$
- **5.** 0
- 7. $\frac{\partial^2 z}{\partial u^2} \left(\frac{\partial u}{\partial x} \right)^2 + 2 \frac{\partial^2 z}{\partial u \partial v} \frac{\partial u}{\partial x} \frac{\partial v}{\partial x} + \frac{\partial^2 z}{\partial v^2} \left(\frac{\partial v}{\partial x} \right)^2 + \frac{\partial z}{\partial u} \frac{\partial^2 u}{\partial x^2} + \frac{\partial z}{\partial v} \frac{\partial^2 v}{\partial x^2}$