MATH 2500 Assignment #2

Due: February 14, 2014, Before Class (12:30)

Reminder: all assignments *must* be accompanied by a signed copy of the honesty declaration available on my website.

Assignments are to be handed in on $8\frac{1}{2} \times 11$ paper, single sided, no ragged edges, stapled in the top left hand corner with the honesty declaration as the first page.

- 1. For each of the following linear Diophantine equations, find all integer solutions for x and y:
 - (a) 1239x + 553y = 21
 - (b) 572x + 1309y = 21
 - (c) 978x + 1113y = 21
- 2. For each of the following linear modular congruences, find all solutions:
 - (a) $877x \equiv 146 \pmod{2775}$
 - (b) $2980x \equiv 1262 \pmod{1288}$
 - (c) $759x \equiv 102 \pmod{1638}$
- 3. For each of the following systems of linear modular congruences, if possible, write as a single congruence:

(If it is not possible, explain why it is not possible.)

(a)
$$x \equiv 4 \pmod{17}$$

 $x \equiv 37 \pmod{73}$
 $x \equiv 57 \pmod{75}$

- (b) $x \equiv 122 \pmod{169}$ $x \equiv 31 \pmod{221}$
- (c) $x \equiv 51 \pmod{112}$ $x \equiv 89 \pmod{147}$

4. If $2413 \equiv 4142 \pmod{m}$ is a true statement, then what are the possible values of m?

- 5. (a) Prove that the last digit of the fifth power of a number is the same as the last digit of that number.
 (IE. n⁵ and n have the same last digit .)
 - (b) Prove that all primes except for 2 and 3 are congruent (mod 12) to one of 1, 5, 7, or 11 (mod 12).