MATH 2500 Assignment #3

Due: March 19, 2014, Before Class (12:30)

Reminder: all assignments *must* be accompanied by a signed copy of the honesty declaration available on my website.

Assignments are to be handed in on $8\frac{1}{2} \times 11$ paper, single sided, no ragged edges, stapled in the top left hand corner with the honesty declaration as the first page.

- 1. Each of the following [n, e] represent the public information for an RSA encryption. Solve for the decrypt key d.
 - (a) [3053, 2321]
 - (b) [2993, 227]
 - (c) [3233, 1013]
- 2. Find the next seven (7) entries in the aliquot sequence starting with s_0 if
 - (a) $s_0 = 105$.
 - (b) $s_0 = 445$.
 - (c) $s_0 = 5020$.
- 3. (a) Suppose n is an 3-perfect number and (n, 12) = 1. Is $12n \ k$ -perfect number? If so, for what k?
 - (b) Suppose n is an 7-perfect number and (n, 14) = 1. Is $14n \ k$ -perfect number? If so, for what k?
 - (c) Suppose p is a prime and n is an p-perfect number and (n, p) = 1. Is pn k-perfect number? If so, for what k?
- 4. (a) Show that if n is odd, then $\phi(2n) = \phi(n)$.
 - (b) Show that if n is even, then $\phi(2n) = 2\phi(n)$.
 - (c) In terms of $\phi(n)$, what are the possible values of $\phi(3n)$, and under what conditions do they occur?
 - (d) Find all values of n such that $\phi(2n) = \phi(3n)$.