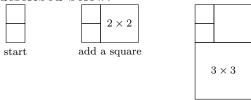
MATH 2030 – Combinatorics 1

Worksheet 10

- 1. Let $S_n = \{1, 2, ..., n\}$. Let X be the set of subsets of S_n , and we consider the relation **R** to be set containment $(A\mathbf{R}B)$ if and only if $A \supset B$. Show that (X, \mathbf{R}) is a boolean algebra.
- 2. Show that if (X,R) is a boolean algebra and xRy, then $y \lor (x \land z) = x \land (y \lor z)$.
- 3. For each of the following, find (if possible) a recurrence relation for the described value:
 - (a) (Tower of Hanoi variant)

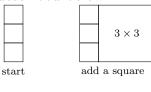
Consider n circular disks (having different diameters) with holes in their centers. These disks are stacked on the first of three pegs with no disk resting upon one of a smaller diameter. A disk that is at the top of the stack on a peg can be moved to an *adjacent* peg provided it is not placed on top of a disk with a larger diameter. Let a_n be the minimum number of moves to transfer these disks to the last peg?

- (b) (Tower of Hanoi variant)
 - Consider n circular disks (having different diameters) with holes in their centers. These disks are stacked on the first of four pegs with no disk resting upon one of a smaller diameter. A disk that is at the top of the stack on a peg can be moved to another peg provided it is not placed on top of a disk with a larger diameter. Let a_n the minimum number of moves to transfer these disks to the last peg?
- (c) Let a_n be the number of binary words with no consecutive 0's.
- (d) Let a_n be the number of ways to write 2n with n summands.
- (e) Suppose we have blobs that produce more blobs once in their lifetime. A Blue blob will produce a Green blob, and a Green blob will produce one Blue blob and one Green blob. We start a blob culture with one Blue blob and one Green blob. Let a_n be the number of blobs in the nth generation.
- (f) Let a_n be the side length of the *n*th square to be added to the sequence described below:



add a square

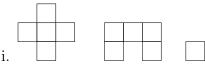
(g) Let a_n be the side length of the nth square to be added to the sequence described below:

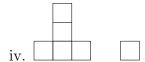


4 × 4

add a square

(h) Let a_n be the number of ways to tile a $3 \times n$ checkerboard with the following tiles.





- 4. Solve the following recurrences:
 - (a) $a_n = (-1)a_{n-1} + 6a_{n-2}$, where $a_0 = 3, a_1 = -14$.
 - (b) $a_n = 6a_{n-1} 5a_{n-2}$, where $a_0 = 1, a_1 = 17$.
 - (c) $a_n = 4a_{n-1} 4a_{n-2}$, where $a_0 = 3, a_1 = 16$.
 - (d) $a_n = 4a_{n-1} + 21a_{n-2}$, where $a_0 = 7, a_1 = 19$.
 - (e) $a_n = 9a_{n-1} 26a_{n-2} + 24a_{n-3}$, where $a_0 = -2$, $a_1 = -1$, $a_2 = 11$.
 - (f) $a_n = 5a_{n-1} 3a_{n-2} 9a_{n-3}$, where $a_0 = 7, a_1 = 2, a_2 = 29$.