MATH 1210 Assignment #1

Due: January 22, 2016; At the start of class

Reminder: all assignments must be accompanied by a signed copy of the honesty declaration available on the course website.

1. Use mathematical induction to prove

$$1+5+9+13+\cdots+(4n+1)=(n+1)(2n+1)$$
 for all $n \ge 1$.

2. Use mathematical induction to prove

$$2+5+8+11+\cdots+(9n-1)=\frac{3n(9n+1)}{2}$$
 for all $n \ge 1$.

3. Use mathematical induction to prove

$$n + (n+1) + (n+2) + (n+3) + \dots + (5n) = 3n(4n+1)$$
 for all $n \ge 1$.

4. Use mathematical induction to prove

$$1^{2} + 2^{2} + 3^{2} + 4^{2} + \dots + (2n)^{2} = \frac{n(2n+1)(4n+1)}{3}$$
 for all $n \ge 1$.

5. Use mathematical induction to prove

$$3^{3n} - 1$$
 is divisible by 13 for all $n \ge 1$.

6. Write each of the following using sigma notation:

(a)
$$1+3+5+7+\cdots+111$$

(b)
$$\frac{5}{12} + \frac{6}{14} + \frac{7}{16} + \frac{8}{18} + \dots + \frac{49}{100}$$

(c)
$$2+6+10+14+\cdots+(8n+6)$$

7. Using the known formulas, evaluate each of the following:

(a)
$$\sum_{j=1}^{12} (j+1)^2$$

(b)
$$\sum_{j=6}^{20} 4j - 7$$

(c)
$$\sum_{j=6}^{20} (j-5)(j+3)$$