MATH 1210 Assignment \#1

Due: January 22, 2016; At the start of class

Reminder: all assignments must be accompanied by a signed copy of the honesty declaration available on the course website.

1. Use mathematical induction to prove

$$
1+5+9+13+\cdots+(4 n+1)=(n+1)(2 n+1) \text { for all } n \geq 1
$$

2. Use mathematical induction to prove

$$
2+5+8+11+\cdots+(9 n-1)=\frac{3 n(9 n+1)}{2} \text { for all } n \geq 1
$$

3. Use mathematical induction to prove $n+(n+1)+(n+2)+(n+3)+\cdots+(5 n)=3 n(4 n+1)$ for all $n \geq 1$.
4. Use mathematical induction to prove
$1^{2}+2^{2}+3^{2}+4^{2}+\cdots+(2 n)^{2}=\frac{n(2 n+1)(4 n+1)}{3}$ for all $n \geq 1$.
5. Use mathematical induction to prove $3^{3 n}-1$ is divisible by 13 for all $n \geq 1$.
6. Write each of the following using sigma notation:
(a) $1+3+5+7+\cdots+111$
(b) $\frac{5}{12}+\frac{6}{14}+\frac{7}{16}+\frac{8}{18}+\cdots+\frac{49}{100}$
(c) $2+6+10+14+\cdots+(8 n+6)$
7. Using the known formulas, evaluate each of the following:
(a) $\sum_{j=1}^{12}(j+1)^{2}$
(b) $\sum_{j=6}^{20} 4 j-7$
(c) $\sum_{j=6}^{20}(j-5)(j+3)$
