MATH 1210 Assignment \#1

Solutions

1. Use mathematical induction to prove

$$
1+5+9+13+\cdots+(4 n+1)=(n+1)(2 n+1) \text { for all } n \geq 1
$$

Solution:

Let P_{n} be the statement $1+5+9+13+\cdots+(4 n+1)=(n+1)(2 n+1)$.
If $n=1$ then, since $4(1)+1=5$ we have
$1+5=6$ and
$((1)+1)(2(1)+1)=2 \cdot 3=6$
Hence P_{1} is true.
Suppose that for some integer $k \geq 1 P_{k}$ were true. IE suppose $1+5+9+13+\cdots+(4 k+1)=(k+1)(2 k+1)$ is true
(We now want to show that P_{k+1} is also true. IE we want to show $1+5+9+13+\cdots+(4(k+1)+1)=((k+1)+1)(2(k+1)+1))$.
Now

$$
\begin{aligned}
& 1+5+9+13+\cdots+(4(k+1)+1) \\
= & 1+5+9+13+\cdots+(4 k+5) \\
= & 1+5+9+13+\cdots+(4 k+1)+(4 k+5) \\
= & (k+1)(2 k+1)+(4 k+5) \\
= & 2 k^{2}+3 k+1+(4 k+5) \\
= & 2 k^{2}+7 k+6 \\
= & (k+2)(2 k+3) \\
= & ((k+1)+1)(2(k+1)+1)
\end{aligned}
$$

Showing that P_{k+1} is true whenever P_{k} is true.

Since P_{1} is true and P_{k+1} is true whenever P_{k} is true, by the Principle of Mathematical Induction, P_{n} is true for all $n \geq 1$.
2. Use mathematical induction to prove

$$
2+5+8+11+\cdots+(9 n-1)=\frac{3 n(9 n+1)}{2} \text { for all } n \geq 1
$$

Solution:

Let P_{n} be the statement $2+5+8+11+\cdots+(9 n-1)=\frac{3 n(9 n+1)}{2}$.
If $n=1$ then, since $9(1)-1=8$ we have
$2+5+8=15$ and
$\frac{3(1)(9(1)+1)}{2}=\frac{30}{2}=15$
Hence P_{1} is true.
Suppose that for some integer $k \geq 1 P_{k}$ were true. IE suppose
$2+5+8+11+\cdots+(9 k-1)=\frac{3 k(9 k+1)}{2}$ is true
(We now want to show that P_{k+1} is also true. IE we want to show
$\left.2+5+8+11+\cdots+(9(k+1)-1)=\frac{3(k+1)(9(k+1)+1)}{2}\right)$.
Now

$$
\begin{aligned}
& 2+5+8+11+\cdots+(9(k+1)-1) \\
= & 2+5+8+11+\cdots+(9 k+8) \\
= & 2+5+8+11+\cdots+(9 k-1)+(9 k+2)+(9 k+5)+(9 k+8) \\
= & \frac{3 k(9 k+1)}{2}+(9 k+2)+(9 k+5)+(9 k+8) \\
= & \frac{3 k(9 k+1)}{2}+27 k+15 \\
= & \frac{27 k^{2}+3 k}{2}+\frac{54 k+30}{2} \\
= & \frac{27 k^{2}+57 k+30}{2} \\
= & \frac{(3 k+3)(9 k+10)}{2} \\
= & \frac{3(k+1)(9(k+1)+1)}{2}
\end{aligned}
$$

Showing that P_{k+1} is true whenever P_{k} is true.

Since P_{1} is true and P_{k+1} is true whenever P_{k} is true, by the Principle of Mathematical Induction, P_{n} is true for all $n \geq 1$.
3. Use mathematical induction to prove $n+(n+1)+(n+2)+(n+3)+\cdots+(5 n)=3 n(4 n+1)$ for all $n \geq 1$.

Solution:

Let P_{n} be the statement $n+(n+1)+(n+2)+(n+3)+\cdots+(5 n)=3 n(4 n+1)$.
If $n=1$ then, since $5(1)=5$ we have
$1+2+3+4+5=15$ and
$3(1)(4(1)+1)=3 \cdot 5=15$
Hence P_{1} is true.
Suppose that for some integer $k \geq 1 P_{k}$ were true. IE suppose
$k+(k+1)+(k+2)+(k+3)+\cdots+(5 k)=3 k(4 k+1)$ is true
(We now want to show that P_{k+1} is also true. IE we want to show
$(k+1)+((k+1)+1)+((k+1)+2)+((k+1)+3)+\cdots+(5(k+1))=3(k+1)(4(k+1)+1))$.
Now

$$
\begin{aligned}
& \quad(k+1)+((k+1)+1)+((k+1)+2)+((k+1)+3)+\cdots+(5(k+1)) \\
= & (k+1)+(k+2)+(k+3)+(k+4)+\cdots+(5 k+5) \\
= & (k+1)+(k+2)+(k+3)+(k+4)+\cdots+(5 k) \\
& \quad+(5 k+1)+(5 k+2)+(5 k+3)+(5 k+4)+(5 k+5) \\
= & k+(k+1)+(k+2)+(k+3)+(k+4)+\cdots+(5 k) \\
& \quad+(5 k+1)+(5 k+2)+(5 k+3)+(5 k+4)+(5 k+5)-k \\
= & 3 k(4 k+1)+(5 k+1)+(5 k+2)+(5 k+3)+(5 k+4)+(5 k+5)-k \\
= & 12 k^{2}+3 k+24 k+15 \\
= & 12 k^{2}+27 k+15 \\
= & (3 k+3)(4 k+5) \\
= & 3(k+1)(4(k+1)+1)
\end{aligned}
$$

Showing that P_{k+1} is true whenever P_{k} is true.

Since P_{1} is true and P_{k+1} is true whenever P_{k} is true, by the Principle of Mathematical Induction, P_{n} is true for all $n \geq 1$.
4. Use mathematical induction to prove

$$
1^{2}+2^{2}+3^{2}+4^{2}+\cdots+(2 n)^{2}=\frac{n(2 n+1)(4 n+1)}{3} .
$$

Solution:

Let P_{n} be the statement $1^{2}+2^{2}+3^{2}+4^{2}+\cdots+(2 n)^{2}=\frac{n(2 n+1)(4 n+1)}{3}$.
If $n=1$ then, since $2(1)=2$ we have
$1^{2}+2^{2}=1+4=5$ and
$\frac{(1)(2(1)+1)(4(1)+1)}{3}=\frac{(3)(5)}{3}=5$
Hence P_{1} is true.
Suppose that for some integer $k \geq 1 P_{k}$ were true. IE suppose
$1^{2}+2^{2}+3^{2}+4^{2}+\cdots+(2 k)^{2}=\frac{k(2 k+1)(4 k+1)}{3}$ is true
(We now want to show that P_{k+1} is also true. IE we want to show
$\left.1^{2}+2^{2}+3^{2}+4^{2}+\cdots+(2(k+1))^{2}=\frac{(k+1)(2(k+1)+1)(4(k+1)+1)}{3}\right)$.
Now

$$
\begin{aligned}
& 1^{2}+2^{2}+3^{2}+4^{2}+\cdots+(2(k+1))^{2} \\
= & 1^{2}+2^{2}+3^{2}+4^{2}+\cdots+(2 k+2)^{2} \\
= & 1^{2}+2^{2}+3^{2}+4^{2}+\cdots+(2 k)^{2}+(2 k+1)^{2}+(2 k+2)^{2} \\
= & \frac{k(2 k+1)(4 k+1)}{3}+(2 k+1)^{2}+(2 k+2)^{2} \\
= & \frac{8 k^{3}+6 k^{2}+k}{3}+\frac{3\left(4 k^{2}+4 k+1\right)}{3}+\frac{3\left(4 k^{2}+8 k+4\right)}{3} \\
= & \frac{8 k^{3}+30 k^{2}+37 k+15}{3} \\
= & \frac{(k+1)\left(8 k^{2}+22 k+15\right)}{3} \\
= & \frac{(k+1)(2 k+3)(4 k+5)}{3} \\
= & \frac{(k+1)(2(k+1)+1)(4(k+1)+1)}{3}
\end{aligned}
$$

Showing that P_{k+1} is true whenever P_{k} is true.

Since P_{1} is true and P_{k+1} is true whenever P_{k} is true, by the Principle of Mathematical Induction, P_{n} is true for all $n \geq 1$.
5. Use mathematical induction to prove $3^{3 n}-1$ is divisible by 13 for all $n \geq 1$.

Solution:

Let P_{n} be the statement $3^{3 n}-1$ is divisible by 13 .
If $n=1$ then
$3^{3(1)}-1=3^{3}-1=27-1=26$ and
$26=(13)(2)$, so 26 is divisible by 13 .
Hence P_{1} is true.
Suppose that for some integer $k \geq 1 P_{k}$ were true. IE suppose
$3^{3 k}-1$ is actually divisible by 13 .
(We now want to show that P_{k+1} is also true. IE we want to show $3^{3(k+1)}-1$ is divisible by 13$)$.
Now

$$
\begin{aligned}
& 3^{3(k+1)}-1 \\
= & 3^{3 k+3}-1 \\
= & 3^{3} \cdot 3^{3 k}-1 \\
= & 3^{3} \cdot 3^{3 k}-3^{3}+3^{3}-1 \\
= & 3^{3}\left(3^{3 k}-1\right)+3^{3}-1 \\
= & 3^{3}\left(3^{3 k}-1\right)+26
\end{aligned}
$$

Since $3^{3 k}-1$ is divisible by 13 (by assumption), and 26 is divisible by 13 (base case) we know that $3^{3}\left(3^{3 k}-1\right)+26$ is divisible by 13 . This shows that P_{k+1} is true whenever P_{k} is true.

Since P_{1} is true and P_{k+1} is true whenever P_{k} is true, by the Principle of Mathematical Induction, P_{n} is true for all $n \geq 1$.
6. Write each of the following using sigma notation:
(a) $1+3+5+7+\cdots+111$

Solution:

$1+3+5+7+\cdots+111=\sum_{j=1}^{56}(2 j-1)$
(b) $\frac{5}{12}+\frac{6}{14}+\frac{7}{16}+\frac{8}{18}+\cdots+\frac{49}{100}$

Solution:

$$
\frac{5}{12}+\frac{6}{14}+\frac{7}{16}+\frac{8}{18}+\cdots+\frac{49}{100}=\sum_{j=1}^{45} \frac{j+4}{2 j+10}=\sum_{k=5}^{49} \frac{k}{2 k+2}
$$

(c) $2+6+10+14+\cdots+(8 n+6)$

Solution:

$2+6+10+14+\cdots+(8 n+6)=\sum_{j=1}^{2 n+2}(4 j-2)$
7. Using the known formulas, evaluate each of the following:
(a) $\sum_{j=1}^{12}(j+1)^{2}$

$$
\begin{aligned}
& \text { Solution: } \\
& \sum_{j=1}^{12}(j+1)^{2} \\
& =\sum_{j=1}^{12}\left(j^{2}+2 j+1\right) \\
& =\sum_{j=1}^{12} j^{2}+2 \sum_{j=1}^{12} j+\sum_{j=1}^{12} 1 \\
& =\frac{(12)(13)(25)}{6}+2 \frac{(12)(13)}{2}+(12) \\
& =650+156+12=818
\end{aligned}
$$

(b) $\sum_{j=6}^{20} 4 j-7$

> Solution:
> $\sum_{j=6}^{20} 4 j-7$
> $=\sum_{k=1}^{15} 4(k+5)-7$
> $=\sum_{k=1}^{15} 4 k+20-7$

$$
\begin{aligned}
& =4 \sum_{k=1}^{15} k+20 \sum_{k=1}^{15} 1-7 \\
& =4 \frac{(15)(16)}{2}+(20)(15)-7 \\
& =480+300-7=773
\end{aligned}
$$

This was the intended (but incorrect) solution:

$$
\begin{aligned}
& \sum_{j=6}^{20}(4 j-7) \\
& =\sum_{k=1}^{15}(4 k+13) \\
& =4 \sum_{k=1}^{15} k+13 \sum_{k=1}^{15} 1 \\
& =4 \frac{(15)(16)}{2}+(13)(15) \\
& =480+195=675
\end{aligned}
$$

(c) $\sum_{j=6}^{20}(j-5)(j+3)$

Solution:

$$
\begin{aligned}
& \sum_{j=6}^{20}(j-5)(j+3) \\
& =\sum_{k=1}^{15}(k)(k+8) \\
& =\sum_{k=1}^{15} k^{2}+8 \sum_{k=1}^{15} k \\
& =\frac{(15)(16)(31)}{6}+8 \frac{(15)(16)}{2} \\
& =1240+960=2200
\end{aligned}
$$

