MATH 1210 Assignment \#2

Due: February 3, 2016; At the start of class

Reminder: all assignments must be accompanied by a signed copy of the honesty declaration available on the course website.

1. Simplify and express the complex numbers in Cartesian form
(a) $\overline{\left(\frac{(6-2 i)^{4}}{(1+3 i)^{4}}\right)}$
(b) $\frac{(i-1)^{3}}{(i+1)^{2}}$
(c) $\left(\frac{i}{e^{i \pi}}\right)^{25}$
2. Simplify and express the complex numbers in polar and exponential forms using the principal value of the argument $\theta, \theta \in(-\pi, \pi]$
(a) $(\overline{\sqrt{3}+3 i})^{2}$
(b) $-\frac{\sqrt{2}}{2}-i \frac{\sqrt{2}}{2}$
(c) $(-12+i)^{3}(-12-i)^{3}$
3. Find all solutions of the equation

$$
x^{6}+x^{3}+1=0 .
$$

4. Find all solutions of the equation

$$
z^{8}=-1
$$

5. Let z_{1} and z_{2} be 2 complex numbers. Show that $\overline{z_{1}+z_{2}}=\overline{z_{1}}+\overline{z_{2}}$.
6. Let z be a complex number. Using mathematical induction prove that $\overline{z^{n}}=\bar{z}^{n}$, for all $n \geq 1$.
7. Consider the following polynomial $P(x)=x^{5}-2 x^{4}+4 x^{3}+2 x^{2}-5 x$.
(a) Verify that $1+2 i$ is a root of $P(x)=0$.
(b) Find all the roots of $P(x)=0$.
(c) Factor $P(x)$ into the product of real linear and irreducible real quadratic factors.
8. (a) Show that $(x-i)$ and $(x-1)$ are linear factors of $x^{4}-2(1+i) x^{3}+4 i x^{2}+2(1-i) x-1=0$.
(b) Factor the polynomial $x^{4}-2(1+i) x^{3}+4 i x^{2}+2(1-i) x-1$ in linear factors.
9. Consider the following polynomial $P(x)=x^{5}-11 x^{4}+43 x^{3}-73 x^{2}+56 x-16$.
(a) Show that $P(x)$ can be rewritten as $P(x)=Q(x)(x-4)$ and $P(x)=T(x)(x-1)$ where $Q(x)$ and $T(x)$ are polynomials in x. Give the degree of $Q(x)$ and $T(x)$.
(b) Show that 4 is a root of multiplicity 2 of $P(x)$.
(c) Factor $P(x)$.
