MATH 1210 Assignment #2 Solutions

Due: February 3, 2016; At the start of class

Reminder: all assignments must be accompanied by a signed copy of the honesty declaration available on the course website.

- 1. Simplify and express the complex numbers in Cartesian form
 - (a) $\overline{\left(\frac{(6-2i)^4}{(1+3i)^4}\right)}$
 - (b) $\frac{(i-1)^3}{(i+1)^2}$
 - (c) $\left(\frac{i}{e^{i\pi}}\right)^{25}$

Solution:

(a)
$$\overline{\left(\frac{(6-2i)^4}{(1+3i)^4}\right)} = \overline{\left(\frac{6-2i}{1+3i}\right)^4} = \overline{\left(\frac{(6-2i)(1-3i)}{(1+3i)(1-3i)}\right)^4} = \overline{\left(\frac{6-18i-2i-6}{1+9}\right)^4} = \overline{\left(\frac{-20i}{10}\right)^4} = \overline{2^4(i^2)^2} = \overline{16} = 16$$

(b)
$$\frac{(i-1)^3}{(i+1)^2} = \frac{(\sqrt{2}(-\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i))^3}{(\sqrt{2}(\frac{1}{\sqrt{2}} + i\frac{1}{\sqrt{2}}))^2} = \frac{(\sqrt{2}e^{i3\pi/4})^3}{(\sqrt{2}e^{i\pi/4})^2} = \sqrt{2}e^{i(9\pi/4 - 2\pi/4)} = \sqrt{2}e^{i(7\pi/4)} = \sqrt{2}(\frac{1}{\sqrt{2}} - i\frac{1}{\sqrt{2}}) = 1 - i$$

(c)
$$\left(\frac{i}{e^{i\pi}}\right)^{25} = \left(\frac{e^{i\pi/2}}{e^{i\pi}}\right)^{25} = \left(e^{i(\pi/2-\pi)}\right)^{25} = \left(e^{-i\pi/2}\right)^{25} = (-i)^{25} = -(i^2)^{12}i = -i$$

2. Simplify and express the complex numbers in polar and exponential forms using the principal value of the argument θ , $\theta \in (-\pi, \pi]$

(a)
$$\left(\sqrt{3}+3i\right)^2$$

(b)
$$-\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}$$

(c)
$$(-12+i)^3(-12-i)^3$$

Solution:

$$\left(\overline{\sqrt{3}+3i}\right)^2 = \left(\sqrt{3}-3i\right)^2 = -6 - i6\sqrt{3} = 6(-1 - i\sqrt{3}) = 12(-\frac{1}{2} - \frac{i\sqrt{3}}{2})$$

Polar form: $12(\cos(-2\pi/3) + i\sin(-2\pi/3))$

Exponential form: $12e^{-i2\pi/3}$

(b)

$$-\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2} = -\frac{1}{\sqrt{2}} - i\frac{1}{\sqrt{2}}$$

Polar form: $\cos(-3\pi/4) + i\sin(-3\pi/4)$

Exponential form: $e^{-i3\pi/4}$

(c)

$$(-12+i)^3(-12-i)^3 = ((-12+i)(-12-i))^3 = ((-12)^2+1^2)^3 = 145^3$$

Polar form: $145^{3} (\cos(0) + i \sin(0))$

Exponential form: 145^3e^{i0}

3. Find all solutions of the equation

$$x^6 + x^3 + 1 = 0.$$

Solution: The polynomial is a polynomial of degree 6. From the Fundamental Theorem of Algebra II, there are 6 solutions to this polynomial equation.

Consider $u = x^3$. The polynomial equation

$$x^{6} + x^{3} + 1 = (x^{3})^{2} + (x^{3})^{1} + 1 = 0$$

can be rewritten as follows

$$u^2 + u + 1 = 0.$$

Roots of the quadratic equation are $u_{1,2} = \frac{-1 \pm i\sqrt{3}}{2}$.

Now, we have to find the cubic roots of $\frac{-1\pm i\sqrt{3}}{2}$. Solve

$$x^3 = \frac{-1 - i\sqrt{3}}{2},$$

and

$$x^3 = \frac{-1 + i\sqrt{3}}{2}.$$

First, we solve

$$x^{3} = \frac{-1 - i\sqrt{3}}{2} = e^{i(-2\pi/3 + 2k\pi)} \Rightarrow (x^{3})^{1/3} = (e^{i(-2\pi/3 + 2k\pi)})^{1/3}$$

with k = 0, 1, 2. We obtain 3 roots, equally spaced on the circle of radius 1, with an angle $2\pi/3$ between successive roots; the first root x_0 has an argument $-2\pi/9$. The roots are then

$$x_0 = e^{-i2\pi/9}$$
,
 $x_1 = e^{i4\pi/9}$,
 $x_2 = e^{i10\pi/9}$ or with the principal value $x_2 = e^{-8\pi/9}$.

Second, we solve

$$x^{3} = \frac{-1 + i\sqrt{3}}{2} = e^{i(2\pi/3 + 2k\pi)} \Rightarrow (x^{3})^{1/3} = (e^{i(2\pi/3 + 2k\pi)})^{1/3}$$

with k = 0, 1, 2. We obtain 3 roots, equally spaced on the circle of radius 1, with an angle $2\pi/3$ between successive roots; the first root x_3 has an argument $2\pi/9$. The roots are then

$$x_3=e^{i2\pi/9},$$
 $x_4=e^{i8\pi/9},$ $x_5=e^{i14\pi/9}$ or with the principal value $x_5=e^{-4\pi/9}.$

The 6 solutions are x_i with $i \in \{0, 1, 2, 3, 4, 5\}$.

4. Find all solutions of the equation

$$z^8 = -1.$$

Solution: Find the 8^{th} roots of -1:

$$z^8 = -1 = e^{i(-\pi + 2k\pi)} \Rightarrow (z^8)^{1/8} = (e^{i(-\pi + 2k\pi)})^{1/8} = e^{i(-\pi/8 + k\pi/4)}$$

with k = 0, 1, 2, 3, 4, 5, 6, 7.

The 8 solutions are equally spaced on the circle of radius 1, with an angle $\pi/4$ between

successive roots; the first root has an argument $-\pi/8$. The solutions are

$$\begin{split} z_0 = & e^{-i\pi/8}, \\ z_1 = & e^{i\pi/8}, \\ z_2 = & e^{i3\pi/8}, \\ z_3 = & e^{i5\pi/8}, \\ z_4 = & e^{i7\pi/8}, \\ z_5 = & e^{i9\pi/8}, \quad \text{or with the principal value } z_5 = e^{-7\pi/8}, \\ z_6 = & e^{i11\pi/8}, \quad \text{or with the principal value } z_6 = e^{-5\pi/8}, \\ z_7 = & e^{i13\pi/8} \quad \text{or with the principal value } z_7 = e^{-3\pi/8}. \end{split}$$

5. Let z_1 and z_2 be 2 complex numbers. Show that $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$.

Solution: Define
$$z_1 = a_1 + ib_1$$
 and $z_2 = a_2 + ib_2$. Their sum is

$$z_1 + z_2 = a_1 + a_2 + i(b_1 + b_2).$$

Take the conjugate on both sides:

$$\overline{z_1 + z_2} = \overline{a_1 + a_2 + i(b_1 + b_2)}$$

$$= a_1 + a_2 - i(b_1 + b_2)$$

$$= a_1 - ib_1 + a_2 - ib_2$$

$$= \overline{z_1} + \overline{z_2}.$$

6. Let z be a complex number. Using mathematical induction prove that $\overline{z^n} = \overline{z}^n$, for all $n \ge 1$.

Solution: Preliminary result: Define two complex numbers $z_1 = r_1 e^{i\theta_1}$ and $z_2 = r_2 e^{i\theta_2}$; multiply:

$$z_1 z_2 = r_1 r_2 e^{i(\theta_1 + \theta_2)}.$$

Take the conjugate on both sides:

$$\overline{z_1 z_2} = \overline{r_1 r_2 e^{i(\theta_1 + \theta_2)}}$$

$$= r_1 r_2 e^{-i(\theta_1 + \theta_2)} = r_1 r_2 e^{-i\theta_1} e^{-i\theta_2} = r_1 e^{-i\theta_1} r_2 e^{-i\theta_2} = \overline{z_1} \ \overline{z_2}.$$

We want to prove that $P_n: \overline{z^n} = \overline{z}^n$, for all $n \ge 1$.

- 1. If n=1, we have $\overline{z^1}=\overline{z}=\overline{z}^1$. Therefore P_1 is true.
- 2. Assume that $P_k : \overline{z^k} = \overline{z}^k$ is true for some $k \ge 1$.

When n = k + 1,

$$\overline{z^{k+1}} = \overline{z^k}\overline{z}$$

$$= \overline{z^k}\overline{z}$$

$$= \overline{z^k}\overline{z}$$

$$= \overline{z^k}\overline{z}$$

$$= \overline{z^k}, \text{ use } P_k$$

$$= \overline{z^{k+1}}$$

We have proved that P_{k+1} is true when P_k is true.

- 3. By the Principle of Mathematical Induction, we can conclude that P_n is a true proposition for all $n \geq 1$.
- 7. Consider the following polynomial $P(x) = x^5 2x^4 + 4x^3 + 2x^2 5x$.
 - (a) Verify that 1 + 2i is a root of P(x) = 0.
 - (b) Find all the roots of P(x) = 0.
 - (c) Factor P(x) into the product of real linear and irreducible real quadratic factors.

Solution:

- (a) P(1+2i) = 0 therefore 1+2i is a root.
- (b) P(x) is a polynomial of degree 5. By the Fundamental Theorem of Algebra II, P has exactly 5 roots (counting multiplicities).

As P has real coefficients, if z is a complex root then \overline{z} is also a root of P. Therefore, as 1+2i is a root, 1-2i is also a root of P.

Moreover, x can be factored as

$$P(x) = x(x^4 - 2x^3 + 4x^2 + 2x - 5),$$

so 0 is also a root. So far, we have:

$$P(x) = x(x-1-2i)(x-1+2i)Q_2(x) = x(x^2-2x+5)Q_2(x)$$

where $Q_2(x)$ is a polynomial of degree 2. To find the last 2 roots, we first need to find $Q_2(x)$. Performing for instance the long division of $x^4 - 2x^3 + 4x^2 + 2x - 5$ by $x^2 - 2x + 5$ gives

$$x^4 - 2x^3 + 4x^2 + 2x - 5 = (x^2 - 2x + 5)(x^2 - 1),$$

where $Q_2(x) = x^2 - 1 = (x - 1)(x + 1)$.

Otherwise, to find the last 2 roots, we could have noticed that P(1) = 0 and P(-1) = 0.

Summing up, roots of P are 0, $1 \pm 2i$ and ± 1 .

(c) So P(x) is factored into a product of real linear and irreducible real quadratic factors as

$$P(x) = x(x-1)(x+1)(x^2 - 2x + 5)$$

- 8. (a) Show that (x i) and (x 1) are linear factors of $x^4 2(1 + i)x^3 + 4ix^2 + 2(1 i)x 1 = 0$.
 - (b) Factor the polynomial $x^4 2(1+i)x^3 + 4ix^2 + 2(1-i)x 1$ in linear factors.

Solution:

- (a) $P(i) = i^4 2(1+i)i^3 + 4ii^2 + 2(1-i)i 1 = 1 + 2(1+i)i 4i + 2(1-i)i 1 = 0$. By the Factor Theorem, as P(i) = 0, (x-i) is a linear factor of P. P(1) = 1 - 2(1+i) + 4i + 2(1-i) - 1 = 0. By the Factor Theorem, as P(1) = 0, (x-1) is a linear factor of P.
- (b) Factor the polynomial: From (a)

$$P(x) = x^4 - 2(1+i)x^3 + 4ix^2 + 2(1-i)x - 1 = (x-i)(x-1)Q_2(x)$$

where $Q_2(x)$ is a polynomial of degree 2 that can be found by long division or by identification.

By identification: Assume that $Q_2(x) = ax^2 + bx + c$, then

$$P(x) = (x^2 - (1+i)x + i)(ax^2 + bx + c)$$

where $x^2 - (1+i)x + i = (x-i)(x-1)$. Expand

$$(x^2 - (1+i)x + i)(ax^2 + bx + c)$$

and identify the coefficients of the terms of same degree:

$$P(x) = x^4 - 2(1+i)x^3 + 4ix^2 + 2(1-i)x - 1$$

= $ax^4 + bx^3 + cx^2 - a(1+i)x^3 - b(1+i)x^2 - c(1+i)x + aix^2 + bix + ci$.

- Terms of degree n = 4: 1 = a.
- Terms of degree n = 3: -2(1+i) = b a(1+i).

- Terms of degree n = 2: 4i = c b(1+i) + ai.
- Terms of degree n = 1: 2(1 i) = -c(1 + i) + bi.
- Terms of degree n = 0: -1 = ci.

We obtain c = i, a = 1 and b = -(1 + i). Finally,

$$P(x) = (x-i)(x-1)(x^2 - (1+i)x + i) = (x-i)(x-1)(x-i)(x-1).$$

So P(x) has 2 linear factors (x-i) and (x-1) of multiplicity 2.

9. Consider the following polynomial

$$P(x) = x^5 - 11x^4 + 43x^3 - 73x^2 + 56x - 16.$$

- (a) Show that P(x) can be rewritten as P(x) = Q(x)(x-4) and P(x) = T(x)(x-1) where Q(x) and T(x) are polynomials in x. Give the degree of Q(x) and T(x).
- (b) Show that 4 is a root of multiplicity 2 of P(x).
- (c) Factor P(x).

Solution:

- (a) P(4) = 0, so by the Factor Theorem, (x-4) is a linear factor of P(x). Therefore, we can write P(x) = (x-4)Q(x), where Q(x) is a polynomial of degree 4. P(1) = 0, so by the Factor Theorem, (x-1) is a linear factor of P(x). Therefore, we can write P(x) = (x-1)T(x), where T(x) is a polynomial of degree 4.
- (b) P(x) can be rewritten as

$$P(x) = (x-1)(x-4)Q_3(x) = (x^2 - 5x + 4)Q_3(x)$$

where $Q_3(x)$ is a polynomial of degree 3. To find $Q_3(x)$, perform long division or identification of like parameters as in Question 8. We find

$$Q_3(x) = x^3 - 6x^2 + 9x - 4.$$

As $Q_3(4) = 0$, (x - 4) is a linear factor of $Q_3(x)$ and so (x - 4) appears for a second time in the factorization of P(x):

$$P(x) = (x-1)(x-4)(x^3 - 6x^2 + 9x - 4) = (x-1)(x-4)(x-4)Q_2(x)$$

where $Q_2(x)$ is a polynomial of degree 2 that we can obtain by dividing $Q_3(x) = x^3 - 6x^2 + 9x - 4$ by (x - 4). The result of the long division of $Q_3(x) = x^3 - 6x^2 + 9x - 4$ by (x - 4) gives $Q_2(x) = x^2 - 2x + 1 = (x - 1)^2$. x - 4 is not a factor of $Q_2(x)$. The factor (x - 4) appears only 2 times in the factorization of P, therefore the root x = 4 has multiplicity 2.

(c) So
$$P(x)$$
 factors as

$$P(x) = (x-1)^3(x-4)^2$$