# MATH 1210 Assignment \#2 Solutions 

## Due: February 3, 2016; At the start of class

Reminder: all assignments must be accompanied by a signed copy of the honesty declaration available on the course website.

1. Simplify and express the complex numbers in Cartesian form
(a) $\overline{\left(\frac{(6-2 i)^{4}}{(1+3 i)^{4}}\right)}$
(b) $\frac{(i-1)^{3}}{(i+1)^{2}}$
(c) $\left(\frac{i}{e^{i \pi}}\right)^{25}$

## Solution:

(a) $\overline{\left(\frac{(6-2 i)^{4}}{(1+3 i)^{4}}\right)}=\overline{\left(\frac{6-2 i}{1+3 i}\right)^{4}}=\overline{\left(\frac{(6-2 i)(1-3 i)}{(1+3 i)(1-3 i)}\right)^{4}}=\overline{\left(\frac{6-18 i-2 i-6}{1+9}\right)^{4}}=\overline{\left(\frac{-20 i}{10}\right)^{4}}=\overline{2^{4}\left(i^{2}\right)^{2}}=$ $\overline{16}=16$
(b) $\frac{(i-1)^{3}}{(i+1)^{2}}=\frac{\left(\sqrt{2}\left(-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{\sqrt{2}}} i\right)\right)^{3}}{\left(\sqrt{2}\left(\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}}\right)\right)^{2}}=\frac{\left(\sqrt{2} e^{i 3 \pi / 4}\right)^{3}}{\left(\sqrt{2} e^{i \pi / 4}\right)^{2}}=\sqrt{2} e^{i(9 \pi / 4-2 \pi / 4)}=\sqrt{2} e^{i(7 \pi / 4)}=\sqrt{2}\left(\frac{1}{\sqrt{2}}-\right.$ $\left.i \frac{1}{\sqrt{2}}\right)=1-i$
(c) $\left(\frac{i}{e^{i \pi}}\right)^{25}=\left(\frac{e^{i \pi / 2}}{e^{i \pi}}\right)^{25}=\left(e^{i(\pi / 2-\pi)}\right)^{25}=\left(e^{-i \pi / 2}\right)^{25}=(-i)^{25}=-\left(i^{2}\right)^{12} i=-i$
2. Simplify and express the complex numbers in polar and exponential forms using the principal value of the argument $\theta, \theta \in(-\pi, \pi]$
(a) $(\overline{\sqrt{3}+3 i})^{2}$
(b) $-\frac{\sqrt{2}}{2}-i \frac{\sqrt{2}}{2}$
(c) $(-12+i)^{3}(-12-i)^{3}$

## Solution:

(a)

$$
(\overline{\sqrt{3}+3 i})^{2}=(\sqrt{3}-3 i)^{2}=-6-i 6 \sqrt{3}=6(-1-i \sqrt{3})=12\left(-\frac{1}{2}-\frac{i \sqrt{3}}{2}\right)
$$

Polar form: $12(\cos (-2 \pi / 3)+i \sin (-2 \pi / 3))$
Exponential form: $12 e^{-i 2 \pi / 3}$
(b)

$$
-\frac{\sqrt{2}}{2}-i \frac{\sqrt{2}}{2}=-\frac{1}{\sqrt{2}}-i \frac{1}{\sqrt{2}}
$$

Polar form: $\cos (-3 \pi / 4)+i \sin (-3 \pi / 4)$
Exponential form: $e^{-i 3 \pi / 4}$
(c)

$$
(-12+i)^{3}(-12-i)^{3}=((-12+i)(-12-i))^{3}=\left((-12)^{2}+1^{2}\right)^{3}=145^{3}
$$

Polar form: $145^{3}(\cos (0)+i \sin (0))$
Exponential form: $145^{3} e^{i 0}$
3. Find all solutions of the equation $x^{6}+x^{3}+1=0$.

Solution: The polynomial is a polynomial of degree 6. From the Fundamental Theorem of Algebra II, there are 6 solutions to this polynomial equation.
Consider $u=x^{3}$. The polynomial equation

$$
x^{6}+x^{3}+1=\left(x^{3}\right)^{2}+\left(x^{3}\right)^{1}+1=0
$$

can be rewritten as follows

$$
u^{2}+u+1=0
$$

Roots of the quadratic equation are $u_{1,2}=\frac{-1 \pm i \sqrt{3}}{2}$.
Now, we have to find the cubic roots of $\frac{-1 \pm i \sqrt{3}}{2}$. Solve

$$
x^{3}=\frac{-1-i \sqrt{3}}{2}
$$

and

$$
x^{3}=\frac{-1+i \sqrt{3}}{2}
$$

First, we solve

$$
x^{3}=\frac{-1-i \sqrt{3}}{2}=e^{i(-2 \pi / 3+2 k \pi)} \Rightarrow\left(x^{3}\right)^{1 / 3}=\left(e^{i(-2 \pi / 3+2 k \pi)}\right)^{1 / 3}
$$

with $k=0,1,2$. We obtain 3 roots, equally spaced on the circle of radius 1 , with an angle $2 \pi / 3$ between successive roots; the first root $x_{0}$ has an argument $-2 \pi / 9$. The roots are then

$$
\begin{aligned}
& x_{0}=e^{-i 2 \pi / 9} \\
& x_{1}=e^{i 4 \pi / 9}, \\
& x_{2}=e^{i 10 \pi / 9} \text { or with the principal value } x_{2}=e^{-8 \pi / 9} .
\end{aligned}
$$

Second, we solve

$$
x^{3}=\frac{-1+i \sqrt{3}}{2}=e^{i(2 \pi / 3+2 k \pi)} \Rightarrow\left(x^{3}\right)^{1 / 3}=\left(e^{i(2 \pi / 3+2 k \pi)}\right)^{1 / 3}
$$

with $k=0,1,2$. We obtain 3 roots, equally spaced on the circle of radius 1 , with an angle $2 \pi / 3$ between successive roots; the first root $x_{3}$ has an argument $2 \pi / 9$. The roots are then

$$
\begin{aligned}
& x_{3}=e^{i 2 \pi / 9} \\
& x_{4}=e^{i 8 \pi / 9}, \\
& x_{5}=e^{i 14 \pi / 9} \text { or with the principal value } x_{5}=e^{-4 \pi / 9} .
\end{aligned}
$$

The 6 solutions are $x_{i}$ with $i \in\{0,1,2,3,4,5\}$.
4. Find all solutions of the equation

$$
z^{8}=-1
$$

Solution: Find the $8^{\text {th }}$ roots of -1 :

$$
z^{8}=-1=e^{i(-\pi+2 k \pi)} \Rightarrow\left(z^{8}\right)^{1 / 8}=\left(e^{i(-\pi+2 k \pi)}\right)^{1 / 8}=e^{i(-\pi / 8+k \pi / 4)}
$$

with $k=0,1,2,3,4,5,6,7$.
The 8 solutions are equally spaced on the circle of radius 1 , with an angle $\pi / 4$ between
successive roots; the first root has an argument $-\pi / 8$. The solutions are

$$
\begin{aligned}
& z_{0}=e^{-i \pi / 8}, \\
& z_{1}=e^{i \pi / 8}, \\
& z_{2}=e^{i 3 \pi / 8}, \\
& z_{3}=e^{i 5 \pi / 8}, \\
& z_{4}=e^{i 7 \pi / 8}, \\
& z_{5}=e^{i 9 \pi / 8}, \quad \text { or with the principal value } z_{5}=e^{-7 \pi / 8}, \\
& z_{6}=e^{i 11 \pi / 8}, \quad \text { or with the principal value } z_{6}=e^{-5 \pi / 8}, \\
& z_{7}=e^{i 13 \pi / 8} \quad \text { or with the principal value } z_{7}=e^{-3 \pi / 8}
\end{aligned}
$$

5. Let $z_{1}$ and $z_{2}$ be 2 complex numbers. Show that $\overline{z_{1}+z_{2}}=\overline{z_{1}}+\overline{z_{2}}$.

Solution: Define $z_{1}=a_{1}+i b_{1}$ and $z_{2}=a_{2}+i b_{2}$. Their sum is

$$
z_{1}+z_{2}=a_{1}+a_{2}+i\left(b_{1}+b_{2}\right) .
$$

Take the conjugate on both sides:

$$
\begin{aligned}
\overline{z_{1}+z_{2}} & =\overline{a_{1}+a_{2}+i\left(b_{1}+b_{2}\right)} \\
& =a_{1}+a_{2}-i\left(b_{1}+b_{2}\right) \\
& =a_{1}-i b_{1}+a_{2}-i b_{2} \\
& =\overline{z_{1}}+\overline{z_{2}} .
\end{aligned}
$$

6. Let $z$ be a complex number. Using mathematical induction prove that $\overline{z^{n}}=\bar{z}^{n}$, for all $n \geq 1$.

Solution: Preliminary result: Define two complex numbers $z_{1}=r_{1} e^{i \theta_{1}}$ and $z_{2}=$ $r_{2} e^{i \theta_{2}}$; multiply:

$$
z_{1} z_{2}=r_{1} r_{2} e^{i\left(\theta_{1}+\theta_{2}\right)}
$$

Take the conjugate on both sides:

$$
\begin{aligned}
\overline{z_{1} z_{2}} & =\overline{r_{1} r_{2} e^{i\left(\theta_{1}+\theta_{2}\right)}} \\
& =r_{1} r_{2} e^{-i\left(\theta_{1}+\theta_{2}\right)}=r_{1} r_{2} e^{-i \theta_{1}} e^{-i \theta_{2}}=r_{1} e^{-i \theta_{1}} r_{2} e^{-i \theta_{2}}=\overline{z_{1}} \overline{z_{2}} .
\end{aligned}
$$

We want to prove that $P_{n}: \overline{z^{n}}=\bar{z}^{n}$, for all $n \geq 1$.

1. If $n=1$, we have $\overline{z^{1}}=\bar{z}=\bar{z}^{1}$. Therefore $P_{1}$ is true.
2. Assume that $P_{k}: \overline{z^{k}}=\bar{z}^{k}$ is true for some $k \geq 1$.

When $n=k+1$,

$$
\begin{array}{rlr}
\overline{z^{k+1}} & =\overline{z^{k} z} & \\
& =\overline{z^{k}} \bar{z} & {\left[\overline{z_{1} z_{2}}=\overline{z_{1}} \overline{z_{2}}, \quad z_{1}, z_{2} \in \mathbb{C}\right]} \\
& =\bar{z}^{k} \bar{z} & {\left[\overline{z^{k}}=\bar{z}^{k}, \text { use } P_{k}\right]} \\
& =\bar{z}^{k+1} &
\end{array}
$$

We have proved that $P_{k+1}$ is true when $P_{k}$ is true.
3. By the Principle of Mathematical Induction, we can conclude that $P_{n}$ is a true proposition for all $n \geq 1$.
7. Consider the following polynomial $P(x)=x^{5}-2 x^{4}+4 x^{3}+2 x^{2}-5 x$.
(a) Verify that $1+2 i$ is a root of $P(x)=0$.
(b) Find all the roots of $P(x)=0$.
(c) Factor $P(x)$ into the product of real linear and irreducible real quadratic factors.

## Solution:

(a) $P(1+2 i)=0$ therefore $1+2 i$ is a root.
(b) $P(x)$ is a polynomial of degree 5. By the Fundamental Theorem of Algebra II, $P$ has exactly 5 roots (counting multiplicities).
As $P$ has real coefficients, if $z$ is a complex root then $\bar{z}$ is also a root of $P$. Therefore, as $1+2 i$ is a root, $1-2 i$ is also a root of $P$.
Moreover, $x$ can be factored as

$$
P(x)=x\left(x^{4}-2 x^{3}+4 x^{2}+2 x-5\right),
$$

so 0 is also a root. So far, we have:

$$
P(x)=x(x-1-2 i)(x-1+2 i) Q_{2}(x)=x\left(x^{2}-2 x+5\right) Q_{2}(x)
$$

where $Q_{2}(x)$ is a polynomial of degree 2 . To find the last 2 roots, we first need to find $Q_{2}(x)$. Performing for instance the long division of $x^{4}-2 x^{3}+4 x^{2}+2 x-5$ by $x^{2}-2 x+5$ gives

$$
x^{4}-2 x^{3}+4 x^{2}+2 x-5=\left(x^{2}-2 x+5\right)\left(x^{2}-1\right)
$$

where $Q_{2}(x)=x^{2}-1=(x-1)(x+1)$.
Otherwise, to find the last 2 roots, we could have noticed that $P(1)=0$ and $P(-1)=0$.
Summing up, roots of $P$ are $0,1 \pm 2 i$ and $\pm 1$.
(c) So $P(x)$ is factored into a product of real linear and irreducible real quadratic factors as

$$
P(x)=x(x-1)(x+1)\left(x^{2}-2 x+5\right)
$$

8. (a) Show that $(x-i)$ and $(x-1)$ are linear factors of

$$
x^{4}-2(1+i) x^{3}+4 i x^{2}+2(1-i) x-1=0 .
$$

(b) Factor the polynomial $x^{4}-2(1+i) x^{3}+4 i x^{2}+2(1-i) x-1$ in linear factors.

## Solution:

(a) $P(i)=i^{4}-2(1+i) i^{3}+4 i i^{2}+2(1-i) i-1=1+2(1+i) i-4 i+2(1-i) i-1=0$. By the Factor Theorem, as $P(i)=0,(x-i)$ is a linear factor of $P$. $P(1)=1-2(1+i)+4 i+2(1-i)-1=0$. By the Factor Theorem, as $P(1)=0$, $(x-1)$ is a linear factor of $P$.
(b) Factor the polynomial: From (a)

$$
P(x)=x^{4}-2(1+i) x^{3}+4 i x^{2}+2(1-i) x-1=(x-i)(x-1) Q_{2}(x)
$$

where $Q_{2}(x)$ is a polynomial of degree 2 that can be found by long division or by identification.
By identification: Assume that $Q_{2}(x)=a x^{2}+b x+c$, then

$$
P(x)=\left(x^{2}-(1+i) x+i\right)\left(a x^{2}+b x+c\right)
$$

where $x^{2}-(1+i) x+i=(x-i)(x-1)$. Expand

$$
\left(x^{2}-(1+i) x+i\right)\left(a x^{2}+b x+c\right)
$$

and identify the coefficients of the terms of same degree:

$$
\begin{aligned}
P(x) & =x^{4}-2(1+i) x^{3}+4 i x^{2}+2(1-i) x-1 \\
& =a x^{4}+b x^{3}+c x^{2}-a(1+i) x^{3}-b(1+i) x^{2}-c(1+i) x+a i x^{2}+b i x+c i .
\end{aligned}
$$

- Terms of degree $n=4: 1=a$.
- Terms of degree $n=3:-2(1+i)=b-a(1+i)$.
- Terms of degree $n=2: 4 i=c-b(1+i)+a i$.
- Terms of degree $n=1: 2(1-i)=-c(1+i)+b i$.
- Terms of degree $n=0:-1=c i$.

We obtain $c=i, a=1$ and $b=-(1+i)$. Finally,

$$
P(x)=(x-i)(x-1)\left(x^{2}-(1+i) x+i\right)=(x-i)(x-1)(x-i)(x-1) .
$$

So $P(x)$ has 2 linear factors $(x-i)$ and $(x-1)$ of multiplicity 2 .
9. Consider the following polynomial
$P(x)=x^{5}-11 x^{4}+43 x^{3}-73 x^{2}+56 x-16$.
(a) Show that $P(x)$ can be rewritten as $P(x)=Q(x)(x-4)$ and $P(x)=T(x)(x-1)$ where $Q(x)$ and $T(x)$ are polynomials in $x$. Give the degree of $Q(x)$ and $T(x)$.
(b) Show that 4 is a root of multiplicity 2 of $P(x)$.
(c) Factor $P(x)$.

## Solution:

(a) $P(4)=0$, so by the Factor Theorem, $(x-4)$ is a linear factor of $P(x)$. Therefore, we can write $P(x)=(x-4) Q(x)$, where $Q(x)$ is a polynomial of degree 4 .
$P(1)=0$, so by the Factor Theorem, $(x-1)$ is a linear factor of $P(x)$. Therefore, we can write $P(x)=(x-1) T(x)$, where $T(x)$ is a polynomial of degree 4 .
(b) $P(x)$ can be rewritten as

$$
P(x)=(x-1)(x-4) Q_{3}(x)=\left(x^{2}-5 x+4\right) Q_{3}(x)
$$

where $Q_{3}(x)$ is a polynomial of degree 3 . To find $Q_{3}(x)$, perform long division or identification of like parameters as in Question 8. We find

$$
Q_{3}(x)=x^{3}-6 x^{2}+9 x-4 .
$$

As $Q_{3}(4)=0,(x-4)$ is a linear factor of $Q_{3}(x)$ and so $(x-4)$ appears for a second time in the factorization of $P(x)$ :

$$
P(x)=(x-1)(x-4)\left(x^{3}-6 x^{2}+9 x-4\right)=(x-1)(x-4)(x-4) Q_{2}(x)
$$

where $Q_{2}(x)$ is a polynomial of degree 2 that we can obtain by dividing $Q_{3}(x)=$ $x^{3}-6 x^{2}+9 x-4$ by $(x-4)$. The result of the long division of $Q_{3}(x)=$ $x^{3}-6 x^{2}+9 x-4$ by $(x-4)$ gives $Q_{2}(x)=x^{2}-2 x+1=(x-1)^{2} . x-4$ is not a factor of $Q_{2}(x)$. The factor $(x-4)$ appears only 2 times in the factorization of $P$, therefore the root $x=4$ has multiplicity 2 .
(c) So $P(x)$ factors as

$$
P(x)=(x-1)^{3}(x-4)^{2}
$$

Page 8

