MATH 1210 Assignment \#3

Due: February 22, 2016; At the start of class

Reminder: all assignments must be accompanied by a signed copy of the honesty declaration available on the course website.

1. Consider the polynomial
$P(x)=\sum_{k=0}^{2015} \frac{(-1)^{k}}{k+1} x^{k}$.
(a) Show that $P(x)$ must have at least one positive real root.
(b) Show that $P(x)$ has no negative real roots.
(c) Show that if z is any root of $P(x)$, then $|z|<2020$.
2. Consider the polynomial $P(x)=x^{3}+4 x^{2}+k^{3} x+3$, where k is some integer. Find all possible values of k such that $P(x)$ has a rational root. (Clearly explain why there are no other values of k that work.)
3. In each part of this question: (i) use Descartes rules of signs to state the number of possible positive and negative zeros of the polynomial; (ii) use the bounds theorem to find bounds for zeros of the polynomial; (iii) use the rational root theorem to list all possible rational zeros of the polynomial; (iv) use this information to find all the zeros of the polynomial.
(a) $6 x^{5}+7 x^{4}-13 x^{3}-85 x^{2}-50 x$
(b) $x^{9}+3 x^{8}+3 x^{7}+3 x^{6}+6 x^{5}+6 x^{4}+4 x^{3}+6 x^{2}+6 x+2$
4. Let $A=\left[\begin{array}{llll}1 & 2 & 1 & 0 \\ 2 & 2 & 0 & 2 \\ 2 & 0 & 1 & 6\end{array}\right] ; B=\left(b_{i j}\right)_{3 \times 4}, b_{i j}=i-j$.

Find a matrix X such that $3\left(X^{T}+I\right)=2\left(B^{T} A\right)^{T}$, or explain why such X does not exist.
5. Let x and y be real numbers; $A=\left[\begin{array}{cc}x & y \\ 0 & -x\end{array}\right]$.

Prove that for any integer $n \geq 0, A^{2 n+1}=\left[\begin{array}{cc}x^{2 n+1} & x^{2 n} y \\ 0 & -x^{2 n+1}\end{array}\right]$.
6. Let \mathbf{u} be a vector from point $(1,-4,0)$ to point $(-2,3,5)$; v be the vector with length 5 in the opposite direction to $\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-2 \hat{\mathbf{k}}$.
(a) Find $\mathbf{2 u} \times \mathbf{v}+(\mathbf{u} \cdot \mathbf{v})|\mathbf{v}| \hat{\mathbf{u}}$, where $\hat{\mathbf{u}}$ is the unit vector in the direction of \mathbf{u}.
(b) Find a vector of length 8 perpendicular to both $\mathbf{3 u}+\mathbf{v}$ and $\mathbf{u} \mathbf{- 2 v}$.
7. Let \mathbf{u} and \mathbf{v} be two unit vectors such that $\mathbf{u} \cdot \mathbf{v}=\frac{1}{32}$.
(a) Prove that vectors $\mathbf{u}-\mathbf{v}$ and $\mathbf{3 u}+\mathbf{3 v}$ are perpendicular.
(b) Find the angle between vectors $\mathbf{2 u}+\mathbf{6 v}$ and $\mathbf{3 u} \mathbf{u} \mathbf{v}$.

Hint: Consider how dot product of a vector with itself is related to its length.

