MATH 1210 Assignment #3

Due: February 22, 2016; At the start of class

Reminder: all assignments must be accompanied by a signed copy of the honesty declaration available on the course website.

1. Consider the polynomial

$$P(x) = \sum_{k=0}^{2015} \frac{(-1)^k}{k+1} x^k.$$

- (a) Show that P(x) must have at least one positive real root.
- (b) Show that P(x) has no negative real roots.
- (c) Show that if z is any root of P(x), then |z| < 2020.
- 2. Consider the polynomial $P(x) = x^3 + 4x^2 + k^3x + 3$, where k is some integer. Find all possible values of k such that P(x) has a rational root. (Clearly explain why there are no other values of k that work.)
- 3. In each part of this question: (i) use Descartes rules of signs to state the number of possible positive and negative zeros of the polynomial; (ii) use the bounds theorem to find bounds for zeros of the polynomial; (iii) use the rational root theorem to list all possible rational zeros of the polynomial; (iv) use this information to find all the zeros of the polynomial.
 - (a) $6x^5 + 7x^4 13x^3 85x^2 50x$
 - (b) $x^9 + 3x^8 + 3x^7 + 3x^6 + 6x^5 + 6x^4 + 4x^3 + 6x^2 + 6x + 2$
- 4. Let $A = \begin{bmatrix} 1 & 2 & 1 & 0 \\ 2 & 2 & 0 & 2 \\ 2 & 0 & 1 & 6 \end{bmatrix}$; $B = (b_{ij})_{3 \times 4}$, $b_{ij} = i j$.

Find a matrix X such that $3(X^T+I)=2(B^TA)^T$, or explain why such X does not exist.

5. Let x and y be real numbers; $A = \begin{bmatrix} x & y \\ 0 & -x \end{bmatrix}$.

Prove that for any integer $n \ge 0$, $A^{2n+1} = \begin{bmatrix} x^{2n+1} & x^{2n}y \\ 0 & -x^{2n+1} \end{bmatrix}$.

- 6. Let **u** be a vector from point (1, -4, 0) to point (-2, 3, 5); v be the vector with length 5 in the opposite direction to $\hat{\mathbf{i}} + 2\hat{\mathbf{j}} - 2\hat{\mathbf{k}}$.
 - (a) Find $2\mathbf{u} \times \mathbf{v} + (\mathbf{u} \cdot \mathbf{v})|\mathbf{v}|\hat{\mathbf{u}}$, where $\hat{\mathbf{u}}$ is the unit vector in the direction of \mathbf{u} .
 - (b) Find a vector of length 8 perpendicular to both $3\mathbf{u}+\mathbf{v}$ and $\mathbf{u}-2\mathbf{v}$.

- 7. Let \mathbf{u} and \mathbf{v} be two unit vectors such that $\mathbf{u} \cdot \mathbf{v} = \frac{1}{32}$.

 (a) Prove that vectors \mathbf{u} - \mathbf{v} and $3\mathbf{u}$ + $3\mathbf{v}$ are perpendicular.

 - (b) Find the angle between vectors $2\mathbf{u}+6\mathbf{v}$ and $3\mathbf{u}-\mathbf{v}$.

Hint: Consider how dot product of a vector with itself is related to its length.