
MATH 1210 Assignment #3 Solutions

Due: February 22, 2016; At the start of class

Reminder: all assignments must be accompanied by a signed copy of the honesty declaration
available on the course website.

1. Consider the polynomial

P (x) =
2015∑
k=0

(−1)k

k+1
xk.

(a) Show that P (x) must have at least one positive real root.
(b) Show that P (x) has no negative real roots.
(c) Show that if z is any root of P (x), then |z| < 2020.

Solution:
a) One can rewrite the polynomial as P (x) = − 1

2016
x2015+ 1

2015
x2014− 1

2014
x2013+ · · ·−

1
2
x+ 1. Each following coefficient has a sign opposite to the previous one, therefore

the number of sign changes in the sequence of coefficients is 2015. By Descarte’s rule
of signs, P (x) must have an odd number (and not greater than 2015) of positive real
roots, so this number cannot be equal to 0.

b)P (−x) = 1
2016

x2015 + 1
2015

x2014 + 1
2014

x2013 + · · ·+ 1
2
x+ 1.

There are no sign changes in the sequence of coefficients, so By Descarte’s rule of
signs, P (x) must have 0 negative real roots.

c) By the Bounds Theorem, if z is any root of P (x), then |z| < M
|a2015| + 1, where

M = max{| − 1
2016

|, | 1
2015

|, . . . , | − 1
2
|, |1|} = 1. Therefore |z| < 1

1
2016

+ 1 = 2016 + 1 =

2017 < 2020.

2. Consider the polynomial P (x) = x3 + 4x2 + k3x + 3, where k is some integer. Find all
possible values of k such that P (x) has a rational root. (Clearly explain why there are
no other values of k that work.)

Solution:
By the Rational Root theorem, if p

q
is a rational root (in lowest terms) of P (x), then

p divides 3 and q divides 1. So the only possible rational roots are 1, 3,−1 and −3.
If 1 is a root, then 0 = P (1) = 1+ 4+ k3 + 3 = k3 + 8, so k3 = −8 and since k must
be an integer, k = −2.
If 3 is a root, then 0 = P (3) = 27+4 · 9+3k3+3 = 3k3+66, so k3 = −22 and there



are no integers that satisfy this equation.
If −1 is a root, then 0 = P (−1) = −1 + 4− k3 + 3 = −k3 + 6, so k3 = 6 and there
are no integers that satisfy this equation.
If −3 is a root, then 0 = P (−3) = −27 + 4 · 9 + −3k3 + 3 = −3k3 + 12, so k3 = 4
and there are no integers that satisfy this equation.
Therefore, the only k such that P (x) has a rational root is k = −2.

3. In each part of this question: (i) use Descartes rules of signs to state the number of
possible positive and negative zeros of the polynomial; (ii) use the bounds theorem to
find bounds for zeros of the polynomial; (iii) use the rational root theorem to list all
possible rational zeros of the polynomial; (iv) use this information to find all the zeros
of the polynomial.

(a) 6x5 + 7x4 − 13x3 − 85x2 − 50x
(b) x9 + 3x8 + 3x7 + 3x6 + 6x5 + 6x4 + 4x3 + 6x2 + 6x+ 2

Solution:
(a)Let P (x) = 6x5 + 7x4 − 13x3 − 85x2 − 50x.
(i)There is one sign change in the sequence of coefficients, so P (x) has 1 positive
root.
There are 3 sign changes in the sequence of coefficients of P (−x) = −6x5 + 7x4 +
13x3 − 85x2 + 50x, so P (x) has 3 or 1 negative root.

(ii)If x is a root of P (x), then |x| < 85
6
+ 1 = 151

6
.

(iii) We can’t use the Rational Root theorem right away, because the last coefficient
is 0. Notice that 0 is a root of P (x), and P (x) = x(6x4 + 7x3 − 13x2 − 85x− 50).
Then we can use the Rational Root theorem for Q(x) = 6x4+7x3−13x2−85x−50.
If p

q
is a root of Q(x), then p divides 50 and q divides 6, so

p
q
∈ ±{1

1
, 1
2
, 1
3
, 1
6
, 2
1
, 2
2
, 2
3
, 2
6
, 5
1
, 5
2
, 5
3
, 5
6
, 10

1
, 10

2
, 10

3
, 10

6
, 25

1
, 25

2
, 25

3
, 25

6
, 50

1
, 50

2
, 50

3
, 50

6
} =

= ±{1, 1
2
, 1
3
, 1
6
, 2, 2

3
, 5, 5

2
, 5
3
, 5
6
, 10, 10

3
, 25, 25

2
, 25

3
, 25

6
, 50, 50

3
}

(iv) Using the Bounds Theorem, we can limit the possible candidates for rational
roots to ±{1, 1

2
, 1
3
, 1
6
, 2, 2

3
, 5, 5

2
, 5
3
, 5
6
, 10, 10

3
, 25

2
, 25

3
, 25

6
}

By plugging different values in Q(x), we eventually get that Q(5
2
) = 0, so Q(x) can

be divided by 2x− 5.
6x4 + 7x3 − 13x2 − 85x− 50 = (2x− 5)(3x3 + 11x2 + 21x+ 10).
3x3 + 11x2 + 21x+ 10 can have rational roots from the set ±{1, 2, 5, 10, 1

3
, 2
3
, 5
3
, 10

3
}.

Since Q(x) has only one positive root (by Descartes’), which is 5
2
, we can try only

negative roots.
By plugging different values in 3x3+11x2+21x+10, we eventually get that Q(−2

3
) =

0, so Q(x) can be divided by 3x+ 2.
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3x3+11x2+21x+10 = (3x+2)(x2+3x+5), and x2+3x+5 has roots −3±
√
9−4·5
2

=

−3
2
±

√
11
2
i.

To summarize, all zeros of P (x) are 0, 5
2
,−2

3
,−3

2
+

√
11
2
i,−3

2
−

√
11
2
i.

(b) Let P (x) = x9 + 3x8 + 3x7 + 3x6 + 6x5 + 6x4 + 4x3 + 6x2 + 6x+ 2

(i) There are no sign changes in the sequence of coefficients, so P (x) has no pos-
itive roots.
There are 9 sign changes in the sequence of coefficients of P (−x) = −x9 + 3x8 −
3x7 +3x6 − 6x5 +6x4 − 4x3 +6x2 − 6x+2, so P (x) has 9, 7, 5, 3 or 1 negative roots.

(ii) If x is a root of P (x), then |x| < 6
1
+ 1 = 7.

(iii) If p
q
is a root of P (x), then p divides 2 and q divides 1, so

p
q
∈ ±{1

1
, 2
1
} = ±{1, 2}

(iv) Since P (x) has no positive roots, the only possible rational roots are −1 and −2.
P (−1) = 0, and P (x) = (x+ 1)(x8 + 2x7 + x6 + 2x5 + 4x4 + 2x3 + 2x2 + 4x+ 2).

(−1)8 + (−1)7 + (−1)6 + 2(−1)5 + 4(−1)4 + 2(−1)3 + 2(−1)2 + 4(−1) + 2 = 0,
and
x8+2x7+x6+2x5+4x4+2x3+2x2+4x+2 = (x+1)(x7+x6+2x4+2x3+2x+2).

(−1)7 + (−1)6 + 2(−1)4 + 2(−1)3 + 2(−1) + 2 = 0, and
x7 + x6 + 2x4 + 2x3 + 2x+ 2 = (x+ 1)(x6 + 2x3 + 2).

So, P (x) = (x+ 1)3(x6 + 2x3 + 2) and x6 + 2x3 + 2 has no rational roots.

To find roots of x6+2x3+2, we can make a substitution y = x3. Then y2+2y+2 = 0
and y = −2±

√
4−4·2
2

= −1± i.

If x3 = −1 + i =
√
2e

3π
4 , then x = 6

√
2e

3π
4 +2kπ

3 , k = 0, 1, 2.
In this case we have 3 roots x = 6

√
2e

π
4 , x = 6

√
2e

11π
12 , x = 6

√
2e

19π
12 = 6

√
2e−

5π
12 .

If x3 = −1− i =
√
2e

5π
4 , then x = 6

√
2e

5π
4 +2kπ

3 , k = 0, 1, 2.
In this case we have 3 roots x = 6

√
2e

5π
12 , x = 6

√
2e

13π
12 = 6

√
2e−

11π
12 , x = 6

√
2e

21π
12 =

6
√
2e−

π
4 .

To summarize, the roots of P (x) are:

−1 (with multiplicity 3), 6
√
2e

π
4 , 6
√
2e−

π
4 , 6
√
2e

5π
12 , 6

√
2e−

5π
12 , 6

√
2e

11π
12 , 6

√
2e−

11π
12 .
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4. Let A =

1 2 1 0
2 2 0 2
2 0 1 6

; B = (bij)3×4, bij = i− j.

Find a matrix X such that 3(XT +I) = 2(BTA)T , or explain why such X does not exist.

Solution:
After taking transpose of both sides of the equation, we get 3X +3I = 2AT (BT )T =
2ATB, so

X = 1
3
(2ATB − 3I) = 2

3
ATB − I = 2

3


1 2 2
2 2 0
1 0 1
0 2 6


0 −1 −2 −3
1 0 −1 −2
2 1 0 −1

− I =

= 2
3


6 1 −4 −9
2 −2 −6 −10
2 0 −2 −4
14 6 −2 −10

−


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 =


3 2

3
−8

3
−6

4
3

−7
3

−4 −20
3

4
3

0 −7
3

−8
3

28
3

4 −4
3

−23
3

.

5. Let x and y be real numbers; A =

[
x y
0 −x

]
.

Prove that for any integer n ≥ 0, A2n+1 =

[
x2n+1 x2ny
0 −x2n+1

]
.

Solution:

Since A2 =

[
x y
0 −x

] [
x y
0 −x

]
=

[
x2 0
0 x2

]
,

and multiplication for diagonal matrices is the same is multiplication of their corre-
sponding entries,

A2n = (A2)n = (

[
x2 0
0 x2

]
)n =

[
x2n 0
0 x2n

]
.

Therefore A2n+1 = A2nA =

[
x2n 0
0 x2n

] [
x y
0 −x

]
=

[
x2n+1 x2ny
0 −x2n+1

]
.

Note: it is also possible to prove the statement using mathematical induction by n.

6. Let u be a vector from point (1,−4, 0) to point (−2, 3, 5); v be the vector with length 5
in the opposite direction to î+ 2ĵ− 2k̂.

(a) Find 2u× v+ (u · v)|v|û, where û is the unit vector in the direction of u.
(b) Find a vector of length 8 perpendicular to both 3u+v and u-2v.
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Solution:
u = ⟨−2− 1, 3 + 4, 5− 0⟩ = ⟨−3, 7, 5⟩.

v = − 5⟨1,2,−2⟩
|⟨1,2,−2⟩| = − 5⟨1,2,−2⟩√

12+22+(−2)2
= ⟨−5

3
,−10

3
, 10

3
⟩

(a)

u× v = ⟨−3, 7, 5⟩ × ⟨−5
3
,−10

3
, 10

3
⟩ =

= ⟨7 · 10
3
+ 5 · 10

3
, 5(−5

3
) + 3 · 10

3
, (−3)(−10

3
)− 7(−5

3
)⟩ = ⟨40, 5

3
, 65

3
⟩.

u · v = ⟨−3, 7, 5⟩ · ⟨−5
3
,−10

3
, 10

3
⟩ = −3 · (−5

3
) + 7 · (−10

3
) + 5 · 10

3
= −5

3

û = u
|u| =

⟨−3,7,5⟩√
32+72+52

= 1√
83
⟨−3, 7, 5⟩;

and |v| = 5 is given is the question.

So, 2u× v+ (u · v)|v|û = 2⟨40, 5
3
, 65

3
⟩ − 5

3
· 5 · 1√

83
⟨−3, 7, 5⟩ =

= ⟨80− 25√
83
, 10

3
− 175

3
√
83
, 130

3
− 125

3
√
83
⟩ = ⟨80

√
83−25√
83

, 10
√
83−175
3
√
83

, 130
√
83−125

3
√
83

⟩.

(b)
Using properties of the cross product, we can write
(3u+v)× (u-2v) = 3u×u− 2u×v+v×u− 2v×v = 3 ·0− 2u×v−u×v−0 =
−3u× v = −3⟨40, 5

3
, 65

3
⟩ = ⟨−120,−5,−65⟩.

Since (3u+v)× (u-2v) is perpendicular to both 3u+v and u-2v, so is −1
5
(3u+v)×

(u-2v) = ⟨24, 1, 13⟩.

A vector of length 8 parallel to the last one will be 8⟨24,1,13⟩
|⟨24,1,13⟩| =

8√
242+12+132

⟨24, 1, 13⟩ =
8√
746

⟨24, 1, 13⟩ = ⟨ 192√
746

, 8√
746

, 104√
746

⟩.

7. Let u and v be two unit vectors such that u · v = 1
32
.

(a) Prove that vectors u-v and 3u+3v are perpendicular.
(b) Find the angle between vectors 2u+6v and 3u-v.
Hint: Consider how dot product of a vector with itself is related to its length.
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Solution:
(a) We will use the fact that u · u = |u|2 = 12 = 1 (and v · v = |v|2 = 12 = 1).

(u-v) · (3u+3v) = 3u ·u+3u · v− 3v ·u− 3v · v = 3 · 1+ 3u · v− 3u · v− 3 · 1 = 0,
therefore vectors u-v and 3u+3v are perpendicular.

(b) (2u+6v) · (3u-v) = 6u · u− 2u · v+ 18v · u− 6v · v = 6 + 16 · 1
32

− 6 = 1
2

|2u+6v|2 = (2u+6v) · (2u+6v) = 2u · u+ 24u · v+ 36v · v = 2 + 24
32

+ 36 = 116
3
,

so |2u+6v| =
√

116
3
.

|3u-v|2 = (3u-v) · (3u-v) = 9u · u− 6u · v+ v · v = 9− 6
32

+ 1 = 157
16
,

so |3u-v| =
√
157
4

.

Then cosine of the angle between 2u+6v and 3u-v is equal to (2u+6v)·(3u-v)
|2u+6v||3u-v| =

1
2√

116
3

√
157
4

= 2
√
3√

18212
, and the angle is cos−1( 2

√
3√

18212
).
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