MATH 1210 Assignment \#3 Solutions

Due: February 22, 2016; At the start of class

Reminder: all assignments must be accompanied by a signed copy of the honesty declaration available on the course website.

1. Consider the polynomial $P(x)=\sum_{k=0}^{2015} \frac{(-1)^{k}}{k+1} x^{k}$.
(a) Show that $P(x)$ must have at least one positive real root.
(b) Show that $P(x)$ has no negative real roots.
(c) Show that if z is any root of $P(x)$, then $|z|<2020$.

Solution:

a) One can rewrite the polynomial as $P(x)=-\frac{1}{2016} x^{2015}+\frac{1}{2015} x^{2014}-\frac{1}{2014} x^{2013}+\cdots-$ $\frac{1}{2} x+1$. Each following coefficient has a sign opposite to the previous one, therefore the number of sign changes in the sequence of coefficients is 2015. By Descarte's rule of signs, $P(x)$ must have an odd number (and not greater than 2015) of positive real roots, so this number cannot be equal to 0 .
b) $P(-x)=\frac{1}{2016} x^{2015}+\frac{1}{2015} x^{2014}+\frac{1}{2014} x^{2013}+\cdots+\frac{1}{2} x+1$.

There are no sign changes in the sequence of coefficients, so By Descarte's rule of signs, $P(x)$ must have 0 negative real roots.
c) By the Bounds Theorem, if z is any root of $P(x)$, then $|z|<\frac{M}{\left|a_{2015}\right|}+1$, where $M=\max \left\{\left|-\frac{1}{2016}\right|,\left|\frac{1}{2015}\right|, \ldots,\left|-\frac{1}{2}\right|,|1|\right\}=1$. Therefore $|z|<\frac{1}{\frac{1}{2016}}+1=2016+1=$ $2017<2020$.
2. Consider the polynomial $P(x)=x^{3}+4 x^{2}+k^{3} x+3$, where k is some integer. Find all possible values of k such that $P(x)$ has a rational root. (Clearly explain why there are no other values of k that work.)

Solution:

By the Rational Root theorem, if $\frac{p}{q}$ is a rational root (in lowest terms) of $P(x)$, then p divides 3 and q divides 1 . So the only possible rational roots are $1,3,-1$ and -3 . If 1 is a root, then $0=P(1)=1+4+k^{3}+3=k^{3}+8$, so $k^{3}=-8$ and since k must be an integer, $k=-2$.
If 3 is a root, then $0=P(3)=27+4 \cdot 9+3 k^{3}+3=3 k^{3}+66$, so $k^{3}=-22$ and there
are no integers that satisfy this equation.
If -1 is a root, then $0=P(-1)=-1+4-k^{3}+3=-k^{3}+6$, so $k^{3}=6$ and there are no integers that satisfy this equation.
If -3 is a root, then $0=P(-3)=-27+4 \cdot 9+-3 k^{3}+3=-3 k^{3}+12$, so $k^{3}=4$ and there are no integers that satisfy this equation.
Therefore, the only k such that $P(x)$ has a rational root is $k=-2$.
3. In each part of this question: (i) use Descartes rules of signs to state the number of possible positive and negative zeros of the polynomial; (ii) use the bounds theorem to find bounds for zeros of the polynomial; (iii) use the rational root theorem to list all possible rational zeros of the polynomial; (iv) use this information to find all the zeros of the polynomial.
(a) $6 x^{5}+7 x^{4}-13 x^{3}-85 x^{2}-50 x$
(b) $x^{9}+3 x^{8}+3 x^{7}+3 x^{6}+6 x^{5}+6 x^{4}+4 x^{3}+6 x^{2}+6 x+2$

Solution:

(a)Let $P(x)=6 x^{5}+7 x^{4}-13 x^{3}-85 x^{2}-50 x$.
(i)There is one sign change in the sequence of coefficients, so $P(x)$ has 1 positive root.
There are 3 sign changes in the sequence of coefficients of $P(-x)=-6 x^{5}+7 x^{4}+$ $13 x^{3}-85 x^{2}+50 x$, so $P(x)$ has 3 or 1 negative root.
(ii)If x is a root of $P(x)$, then $|x|<\frac{85}{6}+1=15 \frac{1}{6}$.
(iii) We can't use the Rational Root theorem right away, because the last coefficient is 0 . Notice that 0 is a root of $P(x)$, and $P(x)=x\left(6 x^{4}+7 x^{3}-13 x^{2}-85 x-50\right)$.
Then we can use the Rational Root theorem for $Q(x)=6 x^{4}+7 x^{3}-13 x^{2}-85 x-50$.
If $\frac{p}{q}$ is a root of $Q(x)$, then p divides 50 and q divides 6 , so
$\frac{p}{q} \in \pm\left\{\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{6}, \frac{2}{1}, \frac{2}{2}, \frac{2}{3}, \frac{2}{6}, \frac{5}{1}, \frac{5}{2}, \frac{5}{3}, \frac{5}{6}, \frac{10}{1}, \frac{10}{2}, \frac{10}{3}, \frac{10}{6}, \frac{25}{1}, \frac{25}{2}, \frac{25}{3}, \frac{25}{6}, \frac{50}{1}, \frac{50}{2}, \frac{50}{3}, \frac{50}{6}\right\}=$ $= \pm\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{6}, 2, \frac{2}{3}, 5, \frac{5}{2}, \frac{5}{3}, \frac{5}{6}, 10, \frac{10}{3}, 25, \frac{25}{2}, \frac{25}{3}, \frac{25}{6}, 50, \frac{50}{3}\right\}$
(iv) Using the Bounds Theorem, we can limit the possible candidates for rational roots to $\pm\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{6}, 2, \frac{2}{3}, 5, \frac{5}{2}, \frac{5}{3}, \frac{5}{6}, 10, \frac{10}{3}, \frac{25}{2}, \frac{25}{3}, \frac{25}{6}\right\}$
By plugging different values in $Q(x)$, we eventually get that $Q\left(\frac{5}{2}\right)=0$, so $Q(x)$ can be divided by $2 x-5$.
$6 x^{4}+7 x^{3}-13 x^{2}-85 x-50=(2 x-5)\left(3 x^{3}+11 x^{2}+21 x+10\right)$.
$3 x^{3}+11 x^{2}+21 x+10$ can have rational roots from the set $\pm\left\{1,2,5,10, \frac{1}{3}, \frac{2}{3}, \frac{5}{3}, \frac{10}{3}\right\}$.
Since $Q(x)$ has only one positive root (by Descartes'), which is $\frac{5}{2}$, we can try only negative roots.
By plugging different values in $3 x^{3}+11 x^{2}+21 x+10$, we eventually get that $Q\left(-\frac{2}{3}\right)=$ 0 , so $Q(x)$ can be divided by $3 x+2$.
$3 x^{3}+11 x^{2}+21 x+10=(3 x+2)\left(x^{2}+3 x+5\right)$, and $x^{2}+3 x+5$ has roots $\frac{-3 \pm \sqrt{9-4.5}}{2}=$ $-\frac{3}{2} \pm \frac{\sqrt{11}}{2} i$.
To summarize, all zeros of $P(x)$ are $0, \frac{5}{2},-\frac{2}{3},-\frac{3}{2}+\frac{\sqrt{11}}{2} i,-\frac{3}{2}-\frac{\sqrt{11}}{2} i$.
(b) Let $P(x)=x^{9}+3 x^{8}+3 x^{7}+3 x^{6}+6 x^{5}+6 x^{4}+4 x^{3}+6 x^{2}+6 x+2$
(i) There are no sign changes in the sequence of coefficients, so $P(x)$ has no positive roots.
There are 9 sign changes in the sequence of coefficients of $P(-x)=-x^{9}+3 x^{8}-$ $3 x^{7}+3 x^{6}-6 x^{5}+6 x^{4}-4 x^{3}+6 x^{2}-6 x+2$, so $P(x)$ has $9,7,5,3$ or 1 negative roots.
(ii) If x is a root of $P(x)$, then $|x|<\frac{6}{1}+1=7$.
(iii) If $\frac{p}{q}$ is a root of $P(x)$, then p divides 2 and q divides 1 , so $\frac{p}{q} \in \pm\left\{\frac{1}{1}, \frac{2}{1}\right\}= \pm\{1,2\}$
(iv) Since $P(x)$ has no positive roots, the only possible rational roots are -1 and -2 . $P(-1)=0$, and $P(x)=(x+1)\left(x^{8}+2 x^{7}+x^{6}+2 x^{5}+4 x^{4}+2 x^{3}+2 x^{2}+4 x+2\right)$.
$(-1)^{8}+(-1)^{7}+(-1)^{6}+2(-1)^{5}+4(-1)^{4}+2(-1)^{3}+2(-1)^{2}+4(-1)+2=0$,
and
$x^{8}+2 x^{7}+x^{6}+2 x^{5}+4 x^{4}+2 x^{3}+2 x^{2}+4 x+2=(x+1)\left(x^{7}+x^{6}+2 x^{4}+2 x^{3}+2 x+2\right)$.
$(-1)^{7}+(-1)^{6}+2(-1)^{4}+2(-1)^{3}+2(-1)+2=0$, and
$x^{7}+x^{6}+2 x^{4}+2 x^{3}+2 x+2=(x+1)\left(x^{6}+2 x^{3}+2\right)$.
So, $P(x)=(x+1)^{3}\left(x^{6}+2 x^{3}+2\right)$ and $x^{6}+2 x^{3}+2$ has no rational roots.
To find roots of $x^{6}+2 x^{3}+2$, we can make a substitution $y=x^{3}$. Then $y^{2}+2 y+2=0$ and $y=\frac{-2 \pm \sqrt{4-4 \cdot 2}}{2}=-1 \pm i$.

If $x^{3}=-1+i=\sqrt{2} e^{\frac{3 \pi}{4}}$, then $x=\sqrt[6]{2} e^{\frac{3 \pi}{4}+2 k \pi} 33=0,1,2$.
In this case we have 3 roots $x=\sqrt[6]{2} e^{\frac{\pi}{4}}, x=\sqrt[6]{2} e^{\frac{11 \pi}{12}}, x=\sqrt[6]{2} e^{\frac{19 \pi}{12}}=\sqrt[6]{2} e^{-\frac{5 \pi}{12}}$.
If $x^{3}=-1-i=\sqrt{2} e^{\frac{5 \pi}{4}}$, then $x=\sqrt[6]{2} e^{\frac{\frac{5 \pi}{4}+2 k \pi}{3}}, k=0,1,2$.
In this case we have 3 roots $x=\sqrt[6]{2} e^{\frac{5 \pi}{12}}, x=\sqrt[6]{2} e^{\frac{13 \pi}{12}}=\sqrt[6]{2} e^{-\frac{11 \pi}{12}}, x=\sqrt[6]{2} e^{\frac{21 \pi}{12}}=$ $\sqrt[6]{2} e^{-\frac{\pi}{4}}$.

To summarize, the roots of $P(x)$ are:
-1 (with multiplicity 3), $\sqrt[6]{2} e^{\frac{\pi}{4}}, \sqrt[6]{2} e^{-\frac{\pi}{4}}, \sqrt[6]{2} e^{\frac{5 \pi}{12}}, \sqrt[6]{2} e^{-\frac{5 \pi}{12}}, \sqrt[6]{2} e^{\frac{11 \pi}{12}}, \sqrt[6]{2} e^{-\frac{11 \pi}{12}}$.
4. Let $A=\left[\begin{array}{llll}1 & 2 & 1 & 0 \\ 2 & 2 & 0 & 2 \\ 2 & 0 & 1 & 6\end{array}\right] ; B=\left(b_{i j}\right)_{3 \times 4}, b_{i j}=i-j$.

Find a matrix X such that $3\left(X^{T}+I\right)=2\left(B^{T} A\right)^{T}$, or explain why such X does not exist.

Solution:

After taking transpose of both sides of the equation, we get $3 X+3 I=2 A^{T}\left(B^{T}\right)^{T}=$ $2 A^{T} B$, so

$$
\begin{aligned}
& X=\frac{1}{3}\left(2 A^{T} B-3 I\right)=\frac{2}{3} A^{T} B-I=\frac{2}{3}\left[\begin{array}{lll}
1 & 2 & 2 \\
2 & 2 & 0 \\
1 & 0 & 1 \\
0 & 2 & 6
\end{array}\right]\left[\begin{array}{cccc}
0 & -1 & -2 & -3 \\
1 & 0 & -1 & -2 \\
2 & 1 & 0 & -1
\end{array}\right]-I= \\
& =\frac{2}{3}\left[\begin{array}{cccc}
6 & 1 & -4 & -9 \\
2 & -2 & -6 & -10 \\
2 & 0 & -2 & -4 \\
14 & 6 & -2 & -10
\end{array}\right]-\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{cccc}
3 & \frac{2}{3} & -\frac{8}{3} & -6 \\
\frac{4}{3} & -\frac{7}{3} & -4 & -\frac{20}{3} \\
\frac{4}{3} & 0 & -\frac{7}{3} & -\frac{8}{3} \\
\frac{28}{3} & 4 & -\frac{4}{3} & -\frac{23}{3}
\end{array}\right] .
\end{aligned}
$$

5. Let x and y be real numbers; $A=\left[\begin{array}{cc}x & y \\ 0 & -x\end{array}\right]$.

Prove that for any integer $n \geq 0, A^{2 n+1}=\left[\begin{array}{cc}x^{2 n+1} & x^{2 n} y \\ 0 & -x^{2 n+1}\end{array}\right]$.

Solution:
Since $A^{2}=\left[\begin{array}{cc}x & y \\ 0 & -x\end{array}\right]\left[\begin{array}{cc}x & y \\ 0 & -x\end{array}\right]=\left[\begin{array}{cc}x^{2} & 0 \\ 0 & x^{2}\end{array}\right]$,
and multiplication for diagonal matrices is the same is multiplication of their corresponding entries,
$A^{2 n}=\left(A^{2}\right)^{n}=\left(\left[\begin{array}{cc}x^{2} & 0 \\ 0 & x^{2}\end{array}\right]\right)^{n}=\left[\begin{array}{cc}x^{2 n} & 0 \\ 0 & x^{2 n}\end{array}\right]$.
Therefore $A^{2 n+1}=A^{2 n} A=\left[\begin{array}{cc}x^{2 n} & 0 \\ 0 & x^{2 n}\end{array}\right]\left[\begin{array}{cc}x & y \\ 0 & -x\end{array}\right]=\left[\begin{array}{cc}x^{2 n+1} & x^{2 n} y \\ 0 & -x^{2 n+1}\end{array}\right]$.

Note: it is also possible to prove the statement using mathematical induction by n.
6. Let \mathbf{u} be a vector from point $(1,-4,0)$ to point $(-2,3,5)$; \mathbf{v} be the vector with length 5 in the opposite direction to $\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-2 \hat{\mathbf{k}}$.
(a) Find $\mathbf{2 u} \times \mathbf{v}+(\mathbf{u} \cdot \mathbf{v})|\mathbf{v}| \hat{\mathbf{u}}$, where $\hat{\mathbf{u}}$ is the unit vector in the direction of \mathbf{u}.
(b) Find a vector of length 8 perpendicular to both $\mathbf{3 u}+\mathbf{v}$ and $\mathbf{u} \mathbf{- 2 v}$.

Solution:

$\mathbf{u}=\langle-2-1,3+4,5-0\rangle=\langle-3,7,5\rangle$.
$\mathbf{v}=-\frac{5\langle 1,2,-2\rangle}{|\langle 1,2,-2\rangle|}=-\frac{5\langle 1,2,-2\rangle}{\sqrt{1^{2}+2^{2}+(-2)^{2}}}=\left\langle-\frac{5}{3},-\frac{10}{3}, \frac{10}{3}\right\rangle$
(a)
$\mathbf{u} \times \mathbf{v}=\langle-3,7,5\rangle \times\left\langle-\frac{5}{3},-\frac{10}{3}, \frac{10}{3}\right\rangle=$
$=\left\langle 7 \cdot \frac{10}{3}+5 \cdot \frac{10}{3}, 5\left(-\frac{5}{3}\right)+3 \cdot \frac{10}{3},(-3)\left(-\frac{10}{3}\right)-7\left(-\frac{5}{3}\right)\right\rangle=\left\langle 40, \frac{5}{3}, \frac{65}{3}\right\rangle$.
$\mathbf{u} \cdot \mathbf{v}=\langle-3,7,5\rangle \cdot\left\langle-\frac{5}{3},-\frac{10}{3}, \frac{10}{3}\right\rangle=-3 \cdot\left(-\frac{5}{3}\right)+7 \cdot\left(-\frac{10}{3}\right)+5 \cdot \frac{10}{3}=-\frac{5}{3}$
$\hat{\mathbf{u}}=\frac{\mathbf{u}}{|\mathbf{u}|}=\frac{\langle-3,7,5\rangle}{\sqrt{3^{2}+7^{2}+5^{2}}}=\frac{1}{\sqrt{83}}\langle-3,7,5\rangle ;$
and $|\mathbf{v}|=5$ is given is the question.

So, $\mathbf{2 u} \times \mathbf{v}+(\mathbf{u} \cdot \mathbf{v})|\mathbf{v}| \hat{\mathbf{u}}=2\left\langle 40, \frac{5}{3}, \frac{65}{3}\right\rangle-\frac{5}{3} \cdot 5 \cdot \frac{1}{\sqrt{83}}\langle-3,7,5\rangle=$
$=\left\langle 80-\frac{25}{\sqrt{83}}, \frac{10}{3}-\frac{175}{3 \sqrt{83}}, \frac{130}{3}-\frac{125}{3 \sqrt{83}}\right\rangle=\left\langle\frac{80 \sqrt{83}-25}{\sqrt{83}}, \frac{10 \sqrt{83}-175}{3 \sqrt{83}}, \frac{130 \sqrt{83}-125}{3 \sqrt{83}}\right\rangle$.
(b)

Using properties of the cross product, we can write
$(\mathbf{3 u}+\mathbf{v}) \times(\mathbf{u}-\mathbf{2 v})=3 \mathbf{u} \times \mathbf{u}-2 \mathbf{u} \times \mathbf{v}+\mathbf{v} \times \mathbf{u}-2 \mathbf{v} \times \mathbf{v}=3 \cdot \mathbf{0}-2 \mathbf{u} \times \mathbf{v}-\mathbf{u} \times \mathbf{v}-\mathbf{0}=$ $-3 \mathbf{u} \times \mathbf{v}=-3\left\langle 40, \frac{5}{3}, \frac{65}{3}\right\rangle=\langle-120,-5,-65\rangle$.

Since $(\mathbf{3 u}+\mathbf{v}) \times(\mathbf{u - 2 v})$ is perpendicular to both $\mathbf{3 u}+\mathbf{v}$ and $\mathbf{u} \mathbf{- 2} \mathbf{v}$, so is $-\frac{1}{5}(\mathbf{3 u}+\mathbf{v}) \times$ $(\mathbf{u}-\mathbf{2 v})=\langle 24,1,13\rangle$.

A vector of length 8 parallel to the last one will be $\frac{8\langle 24,1,13\rangle}{|\langle 24,1,13\rangle|}=\frac{8}{\sqrt{24^{2}+1^{2}+13^{2}}}\langle 24,1,13\rangle=$ $\frac{8}{\sqrt{746}}\langle 24,1,13\rangle=\left\langle\frac{192}{\sqrt{746}}, \frac{8}{\sqrt{746}}, \frac{104}{\sqrt{746}}\right\rangle$.
7. Let \mathbf{u} and \mathbf{v} be two unit vectors such that $\mathbf{u} \cdot \mathbf{v}=\frac{1}{32}$.
(a) Prove that vectors $\mathbf{u}-\mathbf{v}$ and $\mathbf{3 u}+\mathbf{3 v}$ are perpendicular.
(b) Find the angle between vectors $\mathbf{2 u}+\mathbf{6 v}$ and $\mathbf{3 u} \mathbf{u}$.

Hint: Consider how dot product of a vector with itself is related to its length.

Solution:

(a) We will use the fact that $\mathbf{u} \cdot \mathbf{u}=|\mathbf{u}|^{2}=1^{2}=1\left(\right.$ and $\left.\mathbf{v} \cdot \mathbf{v}=|\mathbf{v}|^{2}=1^{2}=1\right)$.
$(\mathbf{u}-\mathbf{v}) \cdot(\mathbf{3 u}+\mathbf{3 v})=3 \mathbf{u} \cdot \mathbf{u}+3 \mathbf{u} \cdot \mathbf{v}-3 \mathbf{v} \cdot \mathbf{u}-3 \mathbf{v} \cdot \mathbf{v}=3 \cdot 1+3 \mathbf{u} \cdot \mathbf{v}-3 \mathbf{u} \cdot \mathbf{v}-3 \cdot 1=0$, therefore vectors $\mathbf{u}-\mathbf{v}$ and $\mathbf{3 u}+\mathbf{3 v}$ are perpendicular.
(b) $(\mathbf{2 u} \mathbf{u} \mathbf{6 v}) \cdot(3 \mathbf{u} \mathbf{- v})=6 \mathbf{u} \cdot \mathbf{u}-2 \mathbf{u} \cdot \mathbf{v}+18 \mathbf{v} \cdot \mathbf{u}-6 \mathbf{v} \cdot \mathbf{v}=6+16 \cdot \frac{1}{32}-6=\frac{1}{2}$
$|\mathbf{2 u}+\mathbf{6 v}|^{2}=(\mathbf{2 u} \mathbf{u} \mathbf{6} \mathbf{v}) \cdot(\mathbf{2 u} \mathbf{u} \mathbf{6} \mathbf{v})=2 \mathbf{u} \cdot \mathbf{u}+24 \mathbf{u} \cdot \mathbf{v}+36 \mathbf{v} \cdot \mathbf{v}=2+\frac{24}{32}+36=\frac{116}{3}$, so $|2 u+6 v|=\sqrt{\frac{116}{3}}$.
$|\mathbf{3 u} \mathbf{u} \mathbf{v}|^{2}=(3 \mathbf{u}-\mathbf{v}) \cdot(\mathbf{3 u} \mathbf{- v})=9 \mathbf{u} \cdot \mathbf{u}-6 \mathbf{u} \cdot \mathbf{v}+\mathbf{v} \cdot \mathbf{v}=9-\frac{6}{32}+1=\frac{157}{16}$, so $|\mathbf{3 u} \mathbf{u} \mathbf{v}|=\frac{\sqrt{157}}{4}$.

Then cosine of the angle between $\mathbf{2 u}+\mathbf{6 v}$ and $\mathbf{3 u} \mathbf{u} \mathbf{v}$ is equal to $\frac{(\mathbf{2 u + 6 v}) \cdot(\mathbf{3 u} \mathbf{v})}{|\mathbf{2 u + 6 v}||\mathbf{3 u}-\mathbf{v}|}=$ $\frac{\frac{1}{2}}{\sqrt{\frac{116}{3}} \frac{\sqrt{157}}{4}}=\frac{2 \sqrt{3}}{\sqrt{18212}}$, and the angle is $\cos ^{-1}\left(\frac{2 \sqrt{3}}{\sqrt{18212}}\right)$.

