MATH 1210 Assignment \#4

Due: March 16, 2016; At the start of class

Reminder: all assignments must be accompanied by a signed copy of the honesty declaration available on the course website.

1. Find the line through $(3,1,-2)$ that intersects and is perpendicular to the line $x=-1+t$, $y=-2+t, z=-1+t$ with $t \in \mathbb{R}$.
2. Find an equation for the plane containing the two lines of equations

$$
\langle x, y, z\rangle=\langle 0,1,2\rangle+t_{1}\langle 2,3,-1\rangle, \quad t_{1} \in \mathbb{R}
$$

and

$$
\langle x, y, z\rangle=\langle 2,-1,0\rangle+t_{2}\langle 4,6,-2\rangle, \quad t_{2} \in \mathbb{R} .
$$

3. Show that the lines $x-3=4 t_{1}, y-4=t_{1}, z-1=0$ and $x+1=12 t_{2}, y-7=6 t_{2}$, $z-5=3 t_{2}$ with $t_{1}, t_{2} \in \mathbb{R}$ intersect, and find the point of intersection.
4. Solve the linear system

$$
\mathbf{A X}=\mathbf{B}
$$

where $\mathbf{B}^{T}=[0,0,0]$ and

$$
\mathbf{A}=\left[\begin{array}{cccc}
1 & -2 & 0 & 3 \\
2 & -3 & -1 & -4 \\
3 & -5 & -1 & -1
\end{array}\right]
$$

Specify the method used to solve the linear system.
5. Compute the determinant of
(a) $\mathbf{A}=\left[\begin{array}{cccc}1 & -2 & 0 & 3 \\ 2 & -3 & -1 & -4 \\ 3 & -5 & -1 & -1\end{array}\right]$
(b) $\mathbf{A}=\left[\begin{array}{cccc}1 & 0 & -1 & 2 \\ 2 & 1 & -3 & 4 \\ 0 & 2 & -2 & 3 \\ 1 & 1 & -4 & -2\end{array}\right]$
(c) \mathbf{A}^{5} when \mathbf{A} is defined as in (b).
(d) $-\mathbf{A}$ when \mathbf{A} is defined as in (b).
(e) \mathbf{A}^{T} when \mathbf{A} is defined as in (b).
6. Find all values of λ for which $\operatorname{det}(\mathbf{A})=0$ for $\mathbf{A}=\left[\begin{array}{ccc}\lambda-4 & 0 & 0 \\ 0 & \lambda & 2 \\ 0 & 3 & \lambda-1\end{array}\right]$.
7. Consider the following linear system

$$
\begin{array}{r}
2 x-y+2 z=2, \\
x-y-z=1, \\
4 x+2 y-z=0 .
\end{array}
$$

(a) What is the rank of the augmented matrix of the linear system?
(b) What is the rank of the coefficient matrix of the linear system?
(c) By using Gauss-Jordan elimination, solve the linear system.
8. Consider the following linear system

$$
\begin{array}{r}
2 x_{1}+2 x_{2}-x_{3}+x_{5}=0, \\
-x_{1}-x_{2}+2 x_{3}-3 x_{4}+x_{5}=0, \\
x_{1}+x_{2}-2 x_{3}-x_{5}=0, \\
x_{3}+x_{4}+x_{5}=0 .
\end{array}
$$

(a) By using Gauss-Jordan elimination, solve the linear system.
(b) Write your solution(s) using the basic solution(s).
(c) Is the trivial solution a solution of this linear system? Explain your answer.

