MATH 1210 Assignment \#5

Due: March 30, 2016; At the start of class

Reminder: all assignments must be accompanied by a signed copy of the honesty declaration available on the course website.

1. Given that the system has a unique solution, find it using the Cramer's rule:
a)

$$
\begin{aligned}
3 x+5 y-6 z & =8 \\
7 x-z & =10 \\
2 x+2 y+z & =2
\end{aligned}
$$

b)

$$
\begin{aligned}
30 x_{1}+40 x_{2}+100 x_{3}-143 x_{4}+x_{5} & =5 \\
23 x_{1}-80 x_{2}+46 x_{3}-127 x_{4}+198 x_{5} & =-10 \\
236 x_{1}+24 x_{3}-27 x_{4}+80 x_{5} & =0 \\
123 x_{1}+56 x_{2}-34 x_{3}+56 x_{5} & =7 \\
145 x_{1}-64 x_{2}-2 x_{3}+x_{4}+30 x_{5} & =-8
\end{aligned}
$$

Hint: For part (b), it may not be necessary to calculate 65×5 determinants. Look for simplifications!
2. Let A and B be square matrices of the same size. Determine if the following statements are always true (justify your answer!):
a) If A is invertible, then $A B$ is invertible;
b) If $A B$ is invertible, then A is invertible.
3. Find all values of x for which the matrix $A=\left[\begin{array}{ccc}2 x & 5-x & 6 \\ x+3 & x-1 & 3 x-3 \\ -40 & 10 x^{2}+30 & 10 x+80\end{array}\right]$ is singular.
4. a) Using the adjoint method, find the inverse of $A=\left[\begin{array}{ccc}3 & -4 & 5 \\ 6 & 7 & -1 \\ 2 & 8 & 1\end{array}\right]$;
b) Check by definition that the matrix found in (a) is indeed the inverse of A;
c) Use (a) to solve the system

$$
\begin{aligned}
3 x-4 y+5 z & =13 \\
6 x+7 y-z & =20 \\
2 x+8 y+z & =23
\end{aligned}
$$

d) Use (a) to solve the system

$$
\begin{aligned}
& 3 x+6 y+2 z=10 \\
& -4 x+7 y+8 z=5 \\
& 5 x-y+z=0
\end{aligned}
$$

e) Solve the system $A^{-1}\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$
5. Let A be a square matrix such that $\operatorname{adj} A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 1 & 3 & 5 \\ -1 & -7 & -9\end{array}\right]$.
a) Find $|\operatorname{adj} A|$;
b) Find $|A|$;
c) Find A^{-1};
d) Find A.
6. Use the direct method to find inverse of $\left[\begin{array}{ccc}2 \sqrt{3} & -1 & -3 \\ 2 & \sqrt{3} & 3 \sqrt{3} \\ 0 & -2 & 2\end{array}\right]$.
7. Determine if the following vectors are linearly independent or linearly dependent. Justify your answer.
a) $\langle 1,2,4\rangle,\langle-1,2,3\rangle,\langle 0,3,-5\rangle$
b) $\langle 2,3,-5,8\rangle,\langle 3,7,9,10\rangle,\langle-4,-6,10,-16\rangle$
c) $\langle 23,35,57,79\rangle,\langle 23,34,45,56\rangle,\langle 87,76,65,54\rangle,\langle 54,43,32,32\rangle,\langle 35,50,75,23\rangle$
d) $\langle-3,2,5,4\rangle,\langle 3,7,8,-10\rangle,\langle 3,5,0,-9\rangle$
e) $\langle 1,2\rangle,\langle 3,-7\rangle,\langle 8,4\rangle$
f) $\langle 1,0,0,-3\rangle,\langle 0,1,2,0\rangle,\langle 1,-3,0,0\rangle,\langle 4,0,6,-9\rangle$
8. Let u, v, w be vectors in 3-dimensional space.
a) If $w=3 u+2 v$, express $v+w$ as a linear combination of u and w.
b) Prove that if u, v and w are linearly dependent, then $u-v, v$ and w are linearly dependent.
c) Is it true that if $u-v, v$ and w are linearly dependent, then u, v and w are linearly dependent? Justify your answer.
d) Is it true that if $u-v, v-w$ and $w-u$ are linearly dependent, then u, v and w are linearly dependent? Justify your answer.

