The determinant of a square matrix $A \in \mathcal{M}_{n}$ is $\operatorname{denoted} \operatorname{det}(A)$ or $|A|$. It is a scalar.
Definition
The determinant of a 1×1 matrix (a matrix with a single entry) is the entry itself.

Definition
If

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

then $\operatorname{det}(A)=|A|=a d-b c$.

Definition (Minor)

Let $A \in \mathcal{M}_{n}$ be a square matrix. The minor $m_{i j}$ of the $(i, j)^{\text {th }}$ entry is the determinant of the $(n-1) \times(n-1)$ matrix obtained by deleting row i and column j from A.

Definition (Cofactor)
Let $A \in \mathcal{M}_{n}$ be a square matrix. The cofactor $c_{i j}$ of the $(i, j)^{\text {th }}$ entry is given by $c_{i j}=(-1)^{i+j} m_{i j}$, where $m_{i j}$ is the minor of the $(i, j)^{\text {th }}$ entry.

Definition (Determinant)

Let $A \in \mathcal{M}_{n}$ be a square matrix. The determinant of A is the scalar obtained by summing the products of the entries on any row or column and their cofactors, i.e., for some $i=1, \ldots, n$,

$$
\operatorname{det}(A)=|A|=\sum_{k=1}^{n} a_{i k} c_{i k}
$$

or for some $j=1, \ldots, n$,

$$
\operatorname{det}(A)=|A|=\sum_{k=1}^{n} a_{k j} c_{k j}
$$

Theorem

Let $A, B \in \mathcal{M}_{n}$ be square matrices. Then

- If A has a row or column of zeros, then $|A|=0$.
- If A is diagonal or (upper or lower) triangular, then $|A|=a_{11} a_{22} \cdots a_{n n}$.
- If two rows (or two columns) of A are interchanged, then the determinant of A is multiplied by -1 .
- If all entries in a row (or in a column) of A are multiplied by a scalar k, then the new matrix has determinant $k|A|$. In particular, $|k A|=k^{n}|A|$.
- If a multiple of one row (resp. column) of A is added to another row (resp. column) of A, then the resulting matrix has the same determinant as A.
- $|A B|=|A||B|$.
- If A is invertible, then $\left|A^{-1}\right|=|A|^{-1}$.

Theorem (Cramer's rule)
Consider the linear system $A X=B$ with $A \in \mathcal{M}_{n}$ a square matrix such that $|A| \neq 0, X=\left(x_{1}, \ldots, x_{n}\right)^{T}$ and $B=\left(b_{1}, \ldots, b_{n}\right)^{T}$ column vectors. Then for $i=1, \ldots, n$,

$$
x_{i}=\frac{\left|A_{i}\right|}{|A|}
$$

where A_{i} is the matrix obtained by replacing column i in A by B.

Theorem

A homogeneous system of n linear equations in n unknowns, $A X=0$ has only the trivial solution if and only if $|A| \neq 0$; it has nontrivial solutions if and only if $|A|=0$.

Theorem

A nonhomogeneous system of n linear equations in n unknowns, $A X=B$ has a unique solution if and only if $|A| \neq 0$; it has either no solutions or an infinity of solutions if and only if $|A|=0$.

