Principle of Mathematical Induction (1/2)

Let P_{n} be a proposition defined on the set of positive integers $(\forall n \in \mathbb{N})$.

First Form

If P_{n} satisfies the two properties:

1. P_{1} is a true proposition,
2. if P_{k} is a true proposition, P_{k+1} is a true proposition.

Then, P_{n} is a true proposition for all positive integers $(\forall n \in \mathbb{N})$.

Principle of Mathematical Induction (2/2)

Let N be an integer.
Let P_{n} be a proposition $\forall n \geq N$, where $n \in \mathbb{N}$.
Second Form
If P_{n} satisfies the two properties:

1. P_{N} is a true proposition,
2. if P_{k} is a true proposition, then P_{k+1} is a true proposition.

Then, P_{n} is a true proposition for all $n \geq N$, where $n \in \mathbb{N}$.

Proof technique: Mathematical Induction

To prove that a proposition P_{n} is true for all $n \geq N$, where $n \in \mathbb{N}$.

1. Prove that the proposition P_{n} is true for the starting value N (usually $N=1$ or $N=2$).
2. Assume that the proposition P_{n} is true when $n=k$. And then prove that it is also true when $n=k+1$. In proving the proposition when $n=k+1$, use the assumption that P_{n} is true when $n=k$.
3. Conclusion: Then, by the Principle of Mathematical Induction, we can conclude that P_{n} is a true proposition for all $n \geq N$, where $n \in \mathbb{N}$.
