Principle of Mathematical Induction (1/2)

Let P_n be a proposition defined on the set of positive integers $(\forall n \in \mathbb{N})$.

First Form

If P_n satisfies the two properties:

- 1. P_1 is a true proposition,
- 2. if P_k is a true proposition, P_{k+1} is a true proposition.

Then, P_n is a true proposition for all positive integers $(\forall n \in \mathbb{N})$.

Principle of Mathematical Induction (2/2)

Let N be an integer.

Let P_n be a proposition $\forall n \geq N$, where $n \in \mathbb{N}$.

Second Form

If P_n satisfies the two properties:

- 1. P_N is a true proposition,
- 2. if P_k is a true proposition, then P_{k+1} is a true proposition.

Then, P_n is a true proposition for all $n \geq N$, where $n \in \mathbb{N}$.

Proof technique: Mathematical Induction

To prove that a proposition P_n is true for all $n \geq N$, where $n \in \mathbb{N}$.

- 1. Prove that the proposition P_n is true for the starting value N (usually N = 1 or N = 2).
- 2. Assume that the proposition P_n is true when n = k. And then prove that it is also true when n = k + 1. In proving the proposition when n = k + 1, use the assumption that P_n is true when n = k.
- 3. **Conclusion:** Then, by the Principle of Mathematical Induction, we can conclude that P_n is a true proposition for all $n \geq N$, where $n \in \mathbb{N}$.