Definition

Let $A \in \mathcal{M}_{n}$ be a square matrix. Then A is invertible (or nonsingular) if there exists a matrix A^{-1} such that

$$
A A^{-1}=A^{-1} A=I_{n}
$$

If no such matrix exists, A is singular. When it exists, the inverse of a given matrix is unique.

Theorem
Let $A, B \in \mathcal{M}_{n}$ be invertible. Then

$$
(A B)^{-1}=B^{-1} A^{-1}
$$

and

$$
\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}
$$

Theorem (Direct method for inversion)
Let $A \in \mathcal{M}_{n}$. If A is invertible, then elementary row operations on the augmented matrix $\left[A \mid I_{n}\right]$ eventually lead to the augmented matrix $\left[I_{n} \mid A^{-1}\right]$.

Definition (Adjoint matrix)

Let $A \in \mathcal{M}_{n}$ be a square matrix. The matrix of cofactors is the matrix $C \in \mathcal{M}_{n}$ with entries the corresponding cofactors of A. The adjoint (matrix) of $A, \operatorname{adj} A$, is then

$$
\operatorname{adj} A=C^{T}
$$

Theorem
Let $A \in \mathcal{M}_{n}$. If $|A| \neq 0$, then A is invertible and

$$
A^{-1}=\frac{1}{|A|} \operatorname{adj} A
$$

Theorem
Let $A \in \mathcal{M}_{n}$ be a square matrix. A has an inverse if and only if $|A| \neq 0$.

Theorem
Let $A \in \mathcal{M}_{n}$ and X, B be two column vectors with n entries. If $|A| \neq 0$, then the linear system $A X=B$ has the unique solution $X=A^{-1} B$.

Theorem
Let $A \in \mathcal{M}_{n}$ be a square matrix, X, B be column vectors with n entries. The following are equivalent.

1. A is invertible.
2. $|A| \neq 0$.
3. The reduced row echelon form of A is I_{n}.
4. A has rank n.
5. $A X=B$ has the unique solution $X=A^{-1} B$.
6. $A X=\mathbf{0}$ has only the trivial solution $X=\mathbf{0}$.
7. A has no eigenvalue equal to 0 .
