Definition (Linear combination)

Let \mathbf{v} and $\mathbf{u}_1, \dots, \mathbf{u}_k$ be vectors in n-space. We say that \mathbf{v} is linear combination of the vectors $\mathbf{u}_1, \dots, \mathbf{u}_k$ if there exists k scalars c_1, \dots, c_k such that

$$\mathbf{v}=c_1\mathbf{u}_1+c_2\mathbf{u}_2+\cdots+c_k\mathbf{u}_k.$$

Definition

A set $\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$ of k nonzero vectors is said to be *linearly independent* if, for c_1, \dots, c_k scalars,

$$c_1\mathbf{u}_1+c_2\mathbf{u}_2+\cdots+c_k\mathbf{u}_k=0\Leftrightarrow c_1=c_2=\cdots=c_k=0.$$

If $\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$ is not linearly independent, we say it is *linearly dependent*.

(Linear dependence of $\{u_1, \ldots, u_k\}$ means that (at least) one of the u_i can be written in terms of some of the others.)

Theorem

Let $\{\mathbf{u}_1, \dots, \mathbf{u}_m\}$ be a set of m vectors in n-space (i.e., each vector has n components). Then

- ▶ If m > n, then $\{\mathbf{u}_1, \dots, \mathbf{u}_m\}$ is linearly dependent.
- ▶ If m = n, form the matrix $M = [\mathbf{u}_1 \cdots \mathbf{u}_n]$ by using the \mathbf{u}_i 's as columns of M. Then $\{\mathbf{u}_1, \dots, \mathbf{u}_m\}$ is linearly independent if and only if $|M| \neq 0$.