Definition (Linear combination)

Let \mathbf{v} and $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$ be vectors in n-space. We say that \mathbf{v} is linear combination of the vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$ if there exists k scalars c_{1}, \ldots, c_{k} such that

$$
\mathbf{v}=c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}+\cdots+c_{k} \mathbf{u}_{k} .
$$

Definition

A set $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ of k nonzero vectors is said to be linearly independent if, for c_{1}, \ldots, c_{k} scalars,

$$
c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}+\cdots+c_{k} \mathbf{u}_{k}=0 \Leftrightarrow c_{1}=c_{2}=\cdots=c_{k}=0 .
$$

If $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is not linearly independent, we say it is linearly dependent.
(Linear dependence of $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ means that (at least) one of the \mathbf{u}_{i} can be written in terms of some of the others.)

Theorem
Let $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right\}$ be a set of m vectors in n-space (i.e., each vector has n components). Then

- If $m>n$, then $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right\}$ is linearly dependent.
- If $m=n$, form the matrix $M=\left[\mathbf{u}_{1} \cdots \mathbf{u}_{n}\right]$ by using the \mathbf{u}_{i} 's as columns of M. Then $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right\}$ is linearly independent if and only if $|M| \neq 0$.

