Matrices

Definition

An $m \times n$ matrix is a rectangular array of mn numbers arranged in m rows and n columns. We write the set of $m \times n$ matrix \mathcal{M}_{mn} and for a matrix $A \in \mathcal{M}_{mn}$ (which we also write $A_{m \times n}$),

$$A = [a_{ij}] = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}.$$

Special matrices

- ▶ A matrix A is **square** if m = n, in which case we denote $A \in \mathcal{M}_n$.
- A square matrix is **diagonal** if its only nonzero entries are (perhaps) on the diagonal, i.e., if $a_{ij} = 0$ whenever $i \neq j$.
- ▶ A diagonal matrix with all 1's on the diagonal is called the **identity** matrix (of order *n*).
- A square matrix is **upper** (resp. **lower**) triangular if all entries below (resp. above) the diagonal are zero, i.e., $a_{ij} = 0$ when i > j (resp. i < j).

Basic operations

- ▶ Equality: A = B iff $a_{ij} = b_{ij}$ for all i = 1, ..., m and j = 1, ..., n.
- Addition: $A + B = [a_{ij} + b_{ij}].$
- ▶ Subtraction: $A B = [a_{ij} b_{ij}].$
- ▶ Scalar multiplication: $cA = [ca_{ii}]$ for all $c \in \mathbb{R}$ or \mathbb{C} .
- ▶ Transpose: The **transpose** of $A = [a_{ij}]$ is $A^T = [a_{ji}]$.

Properties of basic operations

$$A + B = B + A$$

$$A + (B + C) = (A + B) + C$$

$$\lambda(\mu A) = (\lambda \mu)A$$

$$(\lambda + \mu)A = \lambda A + \mu A$$

$$\lambda(A + B) = \lambda A + \lambda B$$

$$A + \mathbf{0} = A$$

$$(A^{T})^{T} = A$$

Commutativity of adition Associativity of adition

Multiplication of matrices

Let $A \in \mathcal{M}_{mp}$ and $B \in \mathcal{M}_{pn}$. The matrix C = AB has dimension $m \times n$ and entries given by

$$c_{ij} = \sum_{k=1}^{p} a_{ik} b_{kj}.$$

Matrix multiplication has the following properties, where A, B, C have dimensions which make these operations possible:

- A(BC) = (AB)C [Associativity of multiplication]
- (A + B)C = AC + BC [Distributivity of multiplication over addition]
- ► A(B + C) = AB + AC [Distributivity of multiplication over addition]
- ▶ 0A = 0 and A0 = 0
- $(\alpha A)(\beta B) = (\alpha \beta)AB$
- $A_{m\times n}I_n=I_mA_{m\times n}=A_{m\times n}$
- ▶ The following is extremely important:

$$(AB)^T = B^T A^T$$

Matrix multiplication is not commutative, i.e., in general, AB ≠ BA

