Matrices

Definition

An $m \times n$ matrix is a rectangular array of $m n$ numbers arranged in m rows and n columns. We write the set of $m \times n$ matrix $\mathcal{M}_{m n}$ and for a matrix $A \in \mathcal{M}_{m n}$ (which we also write $A_{m \times n}$),

$$
A=\left[a_{i j}\right]=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)
$$

Special matrices

- A matrix A is square if $m=n$, in which case we denote $A \in \mathcal{M}_{n}$.
- A square matrix is diagonal if its only nonzero entries are (perhaps) on the diagonal, i.e., if $a_{i j}=0$ whenever $i \neq j$.
- A diagonal matrix with all 1's on the diagonal is called the identity matrix (of order n).
- A square matrix is upper (resp. lower) triangular if all entries below (resp. above) the diagonal are zero, i.e., $a_{i j}=0$ when $i>j($ resp. $i<j)$.

Basic operations

- Equality: $A=B$ iff $a_{i j}=b_{i j}$ for all $i=1, \ldots, m$ and $j=1, \ldots, n$.
- Addition: $A+B=\left[a_{i j}+b_{i j}\right]$.
- Subtraction: $A-B=\left[a_{i j}-b_{i j}\right]$.
- Scalar multiplication: $c A=\left[c a_{i j}\right]$ for all $c \in \mathbb{R}$ or \mathbb{C}.
- Transpose: The transpose of $A=\left[a_{i j}\right]$ is $A^{T}=\left[a_{j i}\right]$.

Properties of basic operations

$$
\begin{aligned}
A+B & =B+A \\
A+(B+C) & =(A+B)+C \\
\lambda(\mu A) & =(\lambda \mu) A \\
(\lambda+\mu) A & =\lambda A+\mu A \\
\lambda(A+B) & =\lambda A+\lambda B \\
A+\mathbf{0} & =A \\
\left(A^{T}\right)^{T} & =A
\end{aligned}
$$

Commutativity of adition Associativity of adition

Multiplication of matrices

Let $A \in \mathcal{M}_{m p}$ and $B \in \mathcal{M}_{p n}$. The matrix $C=A B$ has dimension $m \times n$ and entries given by

$$
c_{i j}=\sum_{k=1}^{p} a_{i k} b_{k j}
$$

Matrix multiplication has the following properties, where A, B, C have dimensions which make these operations possible:

- $A(B C)=(A B) C$
[Associativity of multiplication]
- $(A+B) C=A C+B C$ addition]
- $A(B+C)=A B+A C \quad[$ Distributivity of multiplication over addition]
- $\mathbf{0} A=\mathbf{0}$ and $A \mathbf{0}=\mathbf{0}$
- $(\alpha A)(\beta B)=(\alpha \beta) A B$
- $A_{m \times n} I_{n}=I_{m} A_{m \times n}=A_{m \times n}$
- The following is extremely important:

$$
(A B)^{T}=B^{T} A^{T}
$$

- Matrix multiplication is not commutative, i.e., in general, $A B \neq B A$

