Definition

The modulus of a complex number $z=x+i y$ is

$$
r=|z|=\sqrt{x^{2}+y^{2}}
$$

Definition

The argument of a complex number $z=x+i y$, often denoted by θ or $\arg z$, is the angle of the rotation of the positive real axis in a counterclockwise direction to the line segment joining $z=0$ and $z=x+i y$. Clockwise rotations are regarded as negative.

Definition
The value of the argument in the interval $-\pi<\theta \leq \pi$ is called the principal value of the argument.

Definition (Polar representation)

A complex number z can be written in the form

$$
z=r(\cos \theta+i \sin \theta)
$$

where r is the modulus of z and θ is the argument of z.

Compound angle formulas

$$
\begin{gathered}
\cos (A+B)=\cos A \cos B-\sin A \sin B \\
\cos (A-B)=\cos A \cos B+\sin A \sin B \\
\sin (A+B)=\sin A \cos B+\cos A \sin B \\
\sin (A-B)=\sin A \cos B-\cos A \sin B \\
\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B} \\
\tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B}
\end{gathered}
$$

- The modulus of the product of two complex numbers z_{1} and z_{2} is the product of their moduli:

$$
\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|
$$

- An argument of the product of two complex numbers is the sum of their arguments:

$$
\arg \left(z_{1} z_{2}\right)=\arg z_{1}+\arg z_{2} .
$$

- The modulus of the quotient of two complex numbers is the quotient of their moduli:

$$
\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|}
$$

- An argument of the quotient of two complex numbers is the difference of their arguments:

$$
\arg \left(\frac{z_{1}}{z_{2}}\right)=\arg z_{1}-\arg z_{2}
$$

DeMoivre's Theorem

$$
z^{n}=r^{n}(\cos n \theta+i \sin n \theta)
$$

Euler's Identity

$$
e^{i \theta}=\cos \theta+i \sin \theta
$$

Definition
The exponential form of a complex number is

$$
z=r e^{i \theta}
$$

