Definition

A transformation T from R^{n} to R^{n} is a mapping/function that associates each vector $\mathbf{v}=\left\langle v_{1}, \ldots, v_{n}\right\rangle$ with another vector $\mathbf{v}^{\prime}=\left\langle v_{1}^{\prime} \ldots, v_{n}^{\prime}\right\rangle$. We write $T(\mathbf{v})=\mathbf{v}^{\prime}$, or

$$
\begin{aligned}
& v_{1}^{\prime}=f_{1}\left(v_{1}, \ldots, v_{n}\right) \\
& T: v_{2}^{\prime}=f_{2}\left(v_{1}, \ldots, v_{n}\right) \\
& \ldots \\
& v_{n}^{\prime}=f_{n}\left(v_{1}, \ldots, v_{n}\right)
\end{aligned}
$$

Linear transformation

Definition

A transformation $\mathbf{v}^{\prime}=T(\mathbf{v})$ of R^{n} to R^{n} is linear if for every pair of vectors \mathbf{u} and \mathbf{v} in R^{n}, and every real number c, the following two conditions are satisfied:

$$
\begin{array}{r}
T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v}) \\
T(c \mathbf{v})=c[T(\mathbf{v})]
\end{array}
$$

Definition

A transformation $\mathbf{v}^{\prime}=T(\mathbf{v})$ of R^{n} to R^{n} is linear if the components of \mathbf{v}^{\prime} are linear combinations of those of \mathbf{v}; that is, if

$$
\begin{gather*}
v_{1}^{\prime}=a_{11} v_{1}+a_{12} v_{2}+\cdots+a_{1 n} v_{n} \\
v_{2}^{\prime}=a_{21} v_{1}+a_{22} v_{2}+\cdots+a_{2 n} v_{n} \tag{1}\\
\cdots \\
v_{n}^{\prime}=a_{n 1} v_{1}+a_{n 2} v_{2}+\cdots+a_{n n} v_{n}
\end{gather*}
$$

Definition

Let T be the linear transformation given by Equations (1). We define the matrix associated with T as

$$
A=\left[\begin{array}{llll}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right]
$$

With column vectors representing \mathbf{v} and \mathbf{v}^{\prime},

$$
\mathbf{v}=\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right] \quad \text { and } \quad \mathbf{v}^{\prime}=\left[\begin{array}{c}
v_{1}^{\prime} \\
\vdots \\
v_{n}^{\prime}
\end{array}\right]
$$

the linear transformation T can be written in matrix form:
$\mathbf{v}^{\prime}=A \mathbf{v}$.

Theorem
The $i^{\text {th }}$ column of the matrix associated with a linear transformation T is the image of the vector whose components are all 0 except for a 1 in the $i^{\text {th }}$ position.

Definition

An eigenvector vof a linear transformation T is a nonzero vector \mathbf{v} that does not change direction when mapped by T, i.e., $T(\mathbf{v})=\lambda \mathbf{v}$ for some constant λ.

The scalar λ is called an eigenvalue of T; the nonzero vector \mathbf{v} is called an eigenvector corresponding to the eigenvalue λ; together (λ, \mathbf{v}) is called an eigenpair.

Theorem
Let T be a linear transformation and A be the matrix associated with T. Then λ is an eigenvalue of T if and only if it is a root of the characteristic equation of A :

$$
|A-\lambda I|=0 .
$$

Definition
A square matrix A is said to be symmetric if $A^{T}=A$.

Definition

In R^{n}, we define the dot/inner product of $\mathbf{u}=\left\langle u_{1}, u_{2}, \ldots, u_{n}\right\rangle$ and $\mathbf{v}=\left\langle v_{1}, v_{2}, \ldots, v_{n}\right\rangle$ as

$$
\mathbf{u} \cdot \mathbf{v}=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n} .
$$

Two nonzero vectors \mathbf{u} and \mathbf{v} are said to be orthogonal if $\mathbf{u} \cdot \mathbf{v}=0$. Orthogonality and perpendicularity are the same in R^{2} and R^{3}.

Theorem
If A is a real, symmetric matrix, then:
(1) all eigenvalue of A are real;
(2) eigenvectors corresponding to different eigenvalues are orthogonal.

