Vectors

Definition

Vectors are directed line segments.

Notation for vectors:

- by boldface type, e.g., v;
- by the initial and terminal points, e.g., $O P$;
- by components, e.g., $(x, y, z),\langle x, y, z\rangle,\left[\begin{array}{l}x \\ y \\ x\end{array}\right]$.

Definition
The length of a vector $\mathbf{v}=\left\langle v_{x}, v_{y}, v_{z}\right\rangle$ is

$$
|\mathbf{v}|=\sqrt{v_{x}^{2}+v_{y}^{2}+v_{z}^{2}} .
$$

The length of $\mathbf{v}=\left\langle v_{1}, \ldots, v_{n}\right\rangle$ is

$$
|\mathbf{v}|=\sqrt{v_{1}^{2}+\cdots+v_{n}^{2}}
$$

If $|\mathbf{v}|=1$ then \mathbf{v} is called a unit vector, denoted by $\hat{\mathbf{v}}$.

Let $\mathbf{u}=\left\langle u_{1}, \ldots, u_{n}\right\rangle$ and $\mathbf{v}=\left\langle v_{1}, \ldots, v_{n}\right\rangle$ be two vectors.

- Two vectors are equal if and only if they have the same length and direction, or if and only if they have the same components.
- Multiplication of a vector and a scalar:

$$
\lambda\left\langle v_{1}, \ldots, v_{n}\right\rangle=\left\langle\lambda v_{1}, \ldots, \lambda v_{n}\right\rangle .
$$

- Addition or subtraction of two vectors:

$$
\left\langle u_{1}, \ldots, u_{n}\right\rangle \pm\left\langle v_{1}, \ldots, v_{n}\right\rangle=\left\langle u_{1} \pm v_{1}, \ldots, u_{n} \pm v_{n}\right\rangle
$$

Definition: Scalar/Dot/Inner Product of Vectors

Let $\mathbf{u}=\left\langle u_{1}, \ldots, u_{n}\right\rangle$ and $\mathbf{v}=\left\langle v_{1}, \ldots, v_{n}\right\rangle$ be two vectors. The dot product of \mathbf{u} and \mathbf{v} is

$$
\mathbf{u} \cdot \mathbf{v}=u_{1} v_{1}+\cdots+u_{n} v_{n}=\sum_{i=1}^{n} u_{i} v_{i}
$$

Properties of dot products:

- The dot product is scalar valued.
- $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$.
- $\mathbf{u} \cdot \mathbf{v}=|\mathbf{u}||\mathbf{v}| \cos \theta$, where θ is the angle between \mathbf{u} and \mathbf{v}.
- $\mathbf{u} \cdot \mathbf{v}=0$ if and only if \mathbf{u} and \mathbf{v} are orthogonal (in dimensions 2 and 3 , we also say "perpendicular").
$-\cos \theta=\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}| \overrightarrow{\mathbf{v}} \mid}$.

Definition: Vector/Cross/Outer Product

Let $\mathbf{u}=\left\langle u_{x}, u_{y}, u_{z}\right\rangle$ and $\mathbf{v}=\left\langle v_{x}, v_{y}, v_{z}\right\rangle$ be two vectors, $\overrightarrow{\mathbf{i}}=\langle 1,0,0\rangle, \overrightarrow{\mathbf{j}}=\langle 0,1,0\rangle$ and $\overrightarrow{\mathbf{k}}=\langle 0,0,1\rangle$ be the standard basis vectors. Then

$$
\mathbf{u} \times \mathbf{v}=\left|\begin{array}{ccc}
\overrightarrow{\mathbf{i}} & \overrightarrow{\mathbf{j}} & \overrightarrow{\mathbf{k}} \\
u_{x} & u_{y} & u_{z} \\
v_{x} & v_{y} & v_{z}
\end{array}\right|=\left|\begin{array}{cc}
u_{y} & u_{z} \\
v_{y} & v_{z}
\end{array}\right| \overrightarrow{\mathbf{i}}-\left|\begin{array}{cc}
u_{x} & u_{z} \\
v_{x} & v_{z}
\end{array}\right| \overrightarrow{\mathbf{j}}+\left|\begin{array}{cc}
u_{x} & u_{y} \\
v_{x} & v_{y}
\end{array}\right| \overrightarrow{\mathbf{k}}
$$

or

$$
\mathbf{u} \times \mathbf{v}=\left(u_{y} v_{z}-u_{z} v_{y}\right) \overrightarrow{\mathbf{i}}+\left(u_{z} v_{x}-u_{x} v_{z}\right) \overrightarrow{\mathbf{j}}+\left(u_{x} v_{y}-u_{y} v_{x}\right) \overrightarrow{\mathbf{k}}
$$

Properties of cross product:

- The cross product is vector valued.
- $\mathbf{u} \times \mathbf{v}$ is perpendicular to both \mathbf{u} and \mathbf{v}.
- $|\mathbf{u} \times \mathbf{v}|=|\mathbf{u}||\mathbf{v}| \sin \theta$, where θ is the angle between \mathbf{u} and \mathbf{v}.
$-\sin \theta=\frac{|\mathbf{u} \times \mathbf{v}|}{|\mathbf{u}| \mathbf{v} \mid}$

Theorem
The equation for the plane through the point $\left(x_{0}, y_{0}, z_{0}\right)$ perpendicular to the vector $\langle A, B, C\rangle$ is

$$
A\left(x-x_{0}\right)+B\left(y-y_{0}\right)+C\left(z-z_{0}\right)=0 .
$$

The vector $\langle A, B, C\rangle$ is called a normal vector to the plane.

Theorem

Let L be the line through the point $\left(x_{0}, y_{0}, z_{0}\right)$ in direction $\mathbf{v}=\left\langle v_{x}, v_{y}, v_{z}\right\rangle$. Then the vector equation for L is:

$$
\mathbf{r}=\mathbf{r}_{0}+t \mathbf{v}
$$

or

$$
\langle x, y, z\rangle=\left\langle x_{0}, y_{0}, z_{0}\right\rangle+t\left\langle v_{x}, v_{y}, v_{z}\right\rangle .
$$

The parametric equations for L are

$$
\begin{aligned}
& x=x_{0}+v_{x} t \\
& y=y_{0}+v_{y} t \\
& z=z_{0}+v_{z} t
\end{aligned}
$$

If none of v_{x}, v_{y}, and v_{z} is equal to zero, the line L has symmetric equations

$$
\frac{x-x_{0}}{v_{x}}=\frac{y-y_{0}}{v_{y}}=\frac{z-z_{0}}{v_{z}}
$$

