MATH 1210 Assignment \#5 Solutions

Due: March 30, 2016; At the start of class

Reminder: all assignments must be accompanied by a signed copy of the honesty declaration available on the course website.

1. Given that the system has a unique solution, find it using the Cramer's rule:
a)

$$
\begin{aligned}
3 x+5 y-6 z & =8 \\
7 x-z & =10 \\
2 x+2 y+z & =2
\end{aligned}
$$

b)

$$
\begin{aligned}
30 x_{1}+40 x_{2}+100 x_{3}-143 x_{4}+x_{5} & =5 \\
23 x_{1}-80 x_{2}+46 x_{3}-127 x_{4}+198 x_{5} & =-10 \\
236 x_{1}+24 x_{3}-27 x_{4}+80 x_{5} & =0 \\
123 x_{1}+56 x_{2}-34 x_{3}+56 x_{5} & =7 \\
145 x_{1}-64 x_{2}-2 x_{3}+x_{4}+30 x_{5} & =-8
\end{aligned}
$$

Hint: For part (b), it may not be necessary to calculate 65×5 determinants. Look for simplifications!

Solution: a) Let A be the coefficient matrix of the system; A_{i} be A with the i-th column replaced by the vector of coefficients.
Then $|A|=\left|\begin{array}{ccc}3 & 5 & -6 \\ 7 & 0 & -1 \\ 2 & 2 & 1\end{array}\right|=-7\left|\begin{array}{cc}5 & -6 \\ 2 & 1\end{array}\right|+\left|\begin{array}{ll}3 & 5 \\ 2 & 2\end{array}\right|=-7(5+12)+(6-10)=-123$;
$\left|A_{1}\right|=\left|\begin{array}{ccc}8 & 5 & -6 \\ 10 & 0 & -1 \\ 2 & 2 & 1\end{array}\right|=2\left|\begin{array}{ccc}4 & 5 & -6 \\ 5 & 0 & -1 \\ 1 & 2 & 1\end{array}\right|=2\left(-5\left|\begin{array}{cc}5 & -6 \\ 2 & 1\end{array}\right|+\left|\begin{array}{ll}4 & 5 \\ 1 & 2\end{array}\right|\right)=2(-5(5+$
12) $+(-(8-5))=-164$;
$\left|A_{2}\right|=\left|\begin{array}{ccc}3 & 8 & -6 \\ 7 & 10 & -1 \\ 2 & 2 & 1\end{array}\right|=2\left|\begin{array}{ccc}3 & 4 & -6 \\ 7 & 5 & -1 \\ 2 & 1 & 1\end{array}\right|=2\left(\left|\begin{array}{ccc}3 & 4 & -6 \\ 7 & 5 & -1 \\ 2+7 & 1+5 & 1-1\end{array}\right|=2\left(\left|\begin{array}{ccc}3 & 4 & -6 \\ 7 & 5 & -1 \\ 9 & 6 & 0\end{array}\right|\right)\right.$
$=6\left(\left|\begin{array}{ccc}3 & 4 & -6 \\ 7 & 5 & -1 \\ 3 & 2 & 0\end{array}\right|\right)=6\left(3\left|\begin{array}{cc}4 & -6 \\ 5 & -1\end{array}\right|-2\left|\begin{array}{cc}3 & -6 \\ 7 & -1\end{array}\right|\right)=6(3(-4+30)-2(-3+42))=0$;
$\left|A_{3}\right|=\left|\begin{array}{ccc}3 & 5 & 8 \\ 7 & 0 & 10 \\ 2 & 2 & 2\end{array}\right|=2\left|\begin{array}{ccc}3 & 5 & 4 \\ 7 & 0 & 5 \\ 2 & 2 & 1\end{array}\right|=2(-7(5-8)-5(6-10))=2(21+20)=82 ;$
and by Cramer's rule the solution is $x=\frac{\left|A_{1}\right|}{|A|}=\frac{-164}{-123}=\frac{4}{3}, y=\frac{\left|A_{2}\right|}{|A|}=0, z=\frac{\left|A_{3}\right|}{|A|}=$ $\frac{82}{-123}=-\frac{2}{3}$.
b) Let A be the coefficient matrix of the system; A_{i} be A with the i-th column replaced by the vector of coefficients. One can notice that the second column in the matrix of coefficients A is 8 times the vector of coefficients. This implies $\left|A_{1}\right|=$
$=\left|\begin{array}{ccccc}5 & 40 & 100 & -143 & 1 \\ -10 & -80 & 46 & -127 & 198 \\ 0 & 0 & 24 & -27 & 80 \\ 7 & 56 & -34 & 56 & \\ -8 & -64 & -2 & 1 & 30\end{array}\right|=\left|\begin{array}{ccccc}5 & 40-8 \cdot 5 & 100 & -143 & 1 \\ -10 & -80-8 \cdot(-10) & 46 & -127 & 198 \\ 0 & 0-8 \cdot 0 & 24 & -27 & 80 \\ 7 & 56-8 \cdot 7 & -34 & 56 & \\ -8 & -64-8 \cdot(-8) & -2 & 1 & 30\end{array}\right|=$
$=\left|\begin{array}{ccccc}5 & 0 & 100 & -143 & 1 \\ -10 & 0 & 46 & -127 & 198 \\ 0 & 0 & 24 & -27 & 80 \\ 7 & 0 & -34 & 56 & \\ -8 & 0 & -2 & 1 & 30\end{array}\right|=0$. Similarly $\left|A_{3}\right|=0,\left|A_{4}\right|=0,\left|A_{5}\right|=0$, and
since it is given that the system has unique solution, $|A| \neq 0$ and $x_{1}=\frac{\left|A_{1}\right|}{|A|}=0, x_{3}=$ $\frac{\left|A_{3}\right|}{|A|}=0, x_{4}=\frac{\left|A_{4}\right|}{|A|}=0, x_{5}=\frac{\left|A_{5}\right|}{|A|}=0$. Now $\left|A_{2}\right|=$
$=\left|\begin{array}{ccccc}30 & 5 & 100 & -143 & 1 \\ 23 & -10 & 46 & -127 & 198 \\ 236 & 0 & 24 & -27 & 80 \\ 123 & 7 & -34 & 56 & \\ 145 & -8 & -2 & 1 & 30\end{array}\right|=\frac{1}{8}\left|\begin{array}{ccccc}30 & 40 & 100 & -143 & 1 \\ 23 & -80 & 46 & -127 & 198 \\ 236 & 0 & 24 & -27 & 80 \\ 123 & 56 & -34 & 56 & \\ 145 & -64 & -2 & 1 & 30\end{array}\right|=\frac{1}{8}|A|$,
therefore $x_{2}=\frac{\left|A_{2}\right|}{|A|}=\frac{\frac{1}{8}|A|}{|A|}=\frac{1}{8}$, so the unique solution is $\left(0, \frac{1}{8}, 0,0,0\right)$.
2. Let A and B be square matrices of the same size. Determine if the following statements are always true (justify your answer!):
a) If A is invertible, then $A B$ is invertible;
b) If $A B$ is invertible, then A is invertible.

Solution: a) Not true. For example, take $A=I, B=0$; then A is invertible, but $A B=0$ is not.
b) True. If $A B$ is invertible, then $|A B| \neq 0$. If A was not invertible, $|A|$ would be equal to 0 and then $|A B|=|A||B|=0|B|=0$, which gives a contradiction. Therefore A is invertible.
3. Find all values of x for which the matrix $A=\left[\begin{array}{ccc}2 x & 5-x & 6 \\ x+3 & x-1 & 3 x-3 \\ -40 & 10 x^{2}+30 & 10 x+80\end{array}\right]$ is singular.

Solution: The matrix A is singular if and only if $|A|=0$.

$$
\begin{aligned}
& |A|=10\left|\begin{array}{ccc}
2 x & 5-x & 6 \\
x+3 & x-1 & 3 x-3 \\
-4 & x^{2}+3 & x+8
\end{array}\right|=10\left(2 x\left|\begin{array}{cc}
x-1 & 3 x-3 \\
x^{2}+3 & x+8
\end{array}\right|-\right. \\
& \left.(5-x)\left|\begin{array}{cc}
x+3 & 3 x-3 \\
-4 & x+8
\end{array}\right|+6\left|\begin{array}{cc}
x+3 & x-1 \\
-4 & x^{2}+3
\end{array}\right|\right)=10\left(2 x\left(-3 x^{3}+4 x^{2}-2 x+1\right)-(5-\right. \\
& x)\left(x^{2}+23 x+12\right)+6\left(x^{3}+3 x^{2}+7 x+5\right)=-10\left(6 x^{4}-15 x^{3}-32 x^{2}+59 x+30\right) .
\end{aligned}
$$

Using the Rational Root theorem, we can find that two roots of the last polynomial are -2 and 3 , and so $-10\left(6 x^{4}-15 x^{3}-32 x^{2}+59 x+30\right)=-10(x+2)(x-3)\left(6 x^{2}-\right.$ $9 x-5)$.
The remaining two roots are $\frac{9 \pm \sqrt{9^{2}+4 \cdot 6 \cdot 5}}{2 \cdot 6}=\frac{9 \pm \sqrt{201}}{12}$. Therefore A is singular for $x=-2$, $3, \frac{9+\sqrt{201}}{12}$ or $\frac{9-\sqrt{201}}{12}$.
4. a) Using the adjoint method, find the inverse of $A=\left[\begin{array}{ccc}3 & -4 & 5 \\ 6 & 7 & -1 \\ 2 & 8 & 1\end{array}\right]$;
b) Check by definition that the matrix found in (a) is indeed the inverse of A;
c) Use (a) to solve the system

$$
\begin{aligned}
3 x-4 y+5 z & =13 \\
6 x+7 y-z & =20 \\
2 x+8 y+z & =23
\end{aligned}
$$

d) Use (a) to solve the system

$$
\begin{aligned}
& 3 x+6 y+2 z=10 \\
& -4 x+7 y+8 z=5 \\
& 5 x-y+z=0
\end{aligned}
$$

e) Solve the system $A^{-1}\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$

Solution:

a) Let's find cofactors of elements of A.

$$
\begin{aligned}
& c_{11}=\left|\begin{array}{cc}
7 & -1 \\
8 & 1
\end{array}\right|=15 ; c_{12}=-\left|\begin{array}{cc}
6 & -1 \\
2 & 1
\end{array}\right|=-8 ; c_{13}=\left|\begin{array}{cc}
6 & 7 \\
2 & 8
\end{array}\right|=34 ; c_{21}= \\
& -\left|\begin{array}{cc}
-4 & 5 \\
8 & 1
\end{array}\right|=44 ; c_{22}=\left|\begin{array}{cc}
3 & 5 \\
2 & 1
\end{array}\right|=-7 ; c_{23}=-\left|\begin{array}{cc}
3 & -4 \\
2 & 8
\end{array}\right|=-32 ; c_{31}=\left|\begin{array}{cc}
-4 & 5 \\
7 & -1
\end{array}\right|=
\end{aligned}
$$

$-31 ; c_{32}=-\left|\begin{array}{cc}3 & 5 \\ 6 & -1\end{array}\right|=33 ; c_{33}=\left|\begin{array}{cc}3 & -4 \\ 6 & 7\end{array}\right|=45$.
Now $|A|=a_{11} c_{11}+a_{12} c_{12}+a_{13} c_{13}=3 \cdot 15+(-4)(-8)+5 \cdot 34=247 ;$
$\operatorname{adj} A=\left[\begin{array}{lll}c_{11} & c_{21} & c_{31} \\ c_{12} & c_{22} & c_{32} \\ c_{13} & c_{23} & c_{33}\end{array}\right]=\left[\begin{array}{ccc}15 & 44 & -31 \\ -8 & -7 & 33 \\ 34 & -32 & 45\end{array}\right]$,
so $A^{-1}=\frac{1}{|A|} \operatorname{adj} A=\frac{1}{247}\left[\begin{array}{ccc}15 & 44 & -31 \\ -8 & -7 & 33 \\ 34 & -32 & 45\end{array}\right]$.
b) We need to check that $A A^{-1}=A^{-1} A=I$. Indeed, $A A^{-1}=$
$\left[\begin{array}{ccc}3 & -4 & 5 \\ 6 & 7 & -1 \\ 2 & 8 & 1\end{array}\right] \frac{1}{247}\left[\begin{array}{ccc}15 & 44 & -31 \\ -8 & -7 & 33 \\ 34 & -32 & 45\end{array}\right]=\frac{1}{247}\left[\begin{array}{ccc}3 & -4 & 5 \\ 6 & 7 & -1 \\ 2 & 8 & 1\end{array}\right]\left[\begin{array}{ccc}15 & 44 & -31 \\ -8 & -7 & 33 \\ 34 & -32 & 45\end{array}\right]=$
$=\frac{1}{247}\left[\begin{array}{ccc}247 & 0 & 0 \\ 0 & 247 & 0 \\ 0 & 0 & 247\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] ;$
$A^{-1} A=\frac{1}{247}\left[\begin{array}{ccc}15 & 44 & -31 \\ -8 & -7 & 33 \\ 34 & -32 & 45\end{array}\right]\left[\begin{array}{ccc}3 & -4 & 5 \\ 6 & 7 & -1 \\ 2 & 8 & 1\end{array}\right]=\frac{1}{247}\left[\begin{array}{ccc}247 & 0 & 0 \\ 0 & 247 & 0 \\ 0 & 0 & 247\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$.
c) The system can be rewritten as $A\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}13 \\ 20 \\ 23\end{array}\right]$, which has the unique solution

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=A^{-1}\left[\begin{array}{l}
13 \\
20 \\
23
\end{array}\right]=\frac{1}{247}\left[\begin{array}{ccc}
15 & 44 & -31 \\
-8 & -7 & 33 \\
34 & -32 & 45
\end{array}\right]\left[\begin{array}{l}
13 \\
20 \\
23
\end{array}\right]=\left[\begin{array}{l}
\frac{362}{247} \\
\frac{55}{247} \\
\frac{87}{247}
\end{array}\right] .
$$

d) The system can be rewritten as $A^{T}\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}10 \\ 5 \\ 0\end{array}\right]$, which has the unique solution $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left(A^{T}\right)^{-1}\left[\begin{array}{c}10 \\ 5 \\ 0\end{array}\right]=\left(A^{-1}\right)^{T} \cdot 5\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]=\frac{5}{247}\left[\begin{array}{ccc}15 & -8 & 34 \\ 44 & -7 & -32 \\ -31 & 33 & 45\end{array}\right]\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]=\left[\begin{array}{c}\frac{110}{247} \\ \frac{405}{247} \\ -\frac{45}{247}\end{array}\right]$.
e) The system has the unique solution

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left(A^{-1}\right)^{-1}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=A\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{ccc}
3 & -4 & 5 \\
6 & 7 & -1 \\
2 & 8 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
5 \\
12 \\
11
\end{array}\right] .
$$

5. Let A be a square matrix such that $\operatorname{adj} A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 1 & 3 & 5 \\ -1 & -7 & -9\end{array}\right]$.
a) Find $|\operatorname{adj} A|$;
b) Find $|A|$;
c) Find A^{-1};
d) Find A.

Solution: a) $|\operatorname{adj} A|=\left|\begin{array}{ccc}1 & 2 & 3 \\ 1 & 3 & 5 \\ -1 & -7 & -9\end{array}\right|=\left|\begin{array}{cc}3 & 5 \\ -7 & -9\end{array}\right|-2\left|\begin{array}{cc}1 & 5 \\ -1 & -9\end{array}\right|+3\left|\begin{array}{cc}1 & 3 \\ -1 & -7\end{array}\right|$ $=8-2(-4)+3(-4)=4$.
b) Since $A^{-1}=\frac{1}{|A|} \operatorname{adj}(A), \operatorname{adj}(A)=|A| \cdot A^{-1}$ and $4=|\operatorname{adj}(A)|=|A|^{3}\left|A^{-1}\right|=$ $|A|^{3}|A|^{-1}=|A|^{2}$. Therefore $|A|= \pm 2$.
c) $A^{-1}=\frac{1}{|A|} \operatorname{adj}(A)= \pm \frac{1}{2}\left[\begin{array}{ccc}1 & 2 & 3 \\ 1 & 3 & 5 \\ -1 & -7 & -9\end{array}\right]$.
d) $A=\left(A^{-1}\right)^{-1}=\left(\pm \frac{1}{2}\left[\begin{array}{ccc}1 & 2 & 3 \\ 1 & 3 & 5 \\ -1 & -7 & -9\end{array}\right]\right)^{-1}$. We can use the adjoint method to find
this inverse.
$\operatorname{det}\left(\pm \frac{1}{2}\left[\begin{array}{ccc}1 & 2 & 3 \\ 1 & 3 & 5 \\ -1 & -7 & -9\end{array}\right]\right)= \pm \frac{1}{8}\left|\begin{array}{ccc}1 & 2 & 3 \\ 1 & 3 & 5 \\ -1 & -7 & -9\end{array}\right|= \pm \frac{1}{8} \cdot 4= \pm \frac{1}{2}$.
The cofactor matrix for it is $\frac{1}{4}\left[\begin{array}{ccc}8 & 4 & -4 \\ -3 & -6 & 5 \\ 1 & -2 & 1\end{array}\right]$. So,
$A=\frac{1}{ \pm \frac{1}{2}} \frac{1}{4}\left[\begin{array}{ccc}8 & -3 & 1 \\ 4 & -6 & -2 \\ -4 & 5 & 1\end{array}\right]= \pm \frac{1}{2}\left[\begin{array}{ccc}8 & -3 & 1 \\ 4 & -6 & -2 \\ -4 & 5 & 1\end{array}\right]$.
6. Use the direct method to find inverse of $\left[\begin{array}{ccc}2 \sqrt{3} & -1 & -3 \\ 2 & \sqrt{3} & 3 \sqrt{3} \\ 0 & -2 & 2\end{array}\right]$.

Solution:

$$
\begin{gathered}
{\left[\begin{array}{ccc|ccc}
2 \sqrt{3} & -1 & -3 & 1 & 0 & 0 \\
2 & \sqrt{3} & 3 \sqrt{3} & 0 & 1 & 0 \\
0 & -2 & 2 & 0 & 0 & 1
\end{array}\right] R_{1} \leftrightarrow R_{2}\left[\begin{array}{ccc|ccc}
2 & \sqrt{3} & 3 \sqrt{3} & 0 & 1 & 0 \\
2 \sqrt{3} & -1 & -3 & 1 & 0 & 0 \\
0 & -2 & 2 & 0 & 0 & 1
\end{array}\right] R_{1} \leftarrow \frac{1}{2} R_{1}} \\
\\
{\left[\begin{array}{ccc|ccc}
1 & \frac{\sqrt{3}}{2} & \frac{3 \sqrt{3}}{2} & 0 & \frac{1}{2} & 0 \\
2 \sqrt{3} & -1 & -3 & 1 & 0 & 0 \\
0 & -2 & 2 & 0 & 0 & 1
\end{array}\right] R_{2} \leftarrow R_{2}-2 \sqrt{3} R_{1}}
\end{gathered}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccc|ccc}
1 & \frac{\sqrt{3}}{2} & \frac{3 \sqrt{3}}{2} & 0 & \frac{1}{2} & 0 \\
0 & -4 & -12 & 1 & -\sqrt{3} & 0 \\
0 & -2 & 2 & 0 & 0 & 1
\end{array}\right] R_{2} \leftarrow-\frac{1}{4} R_{2}} \\
& {\left[\begin{array}{ccc|ccc}
1 & \frac{\sqrt{3}}{2} & \frac{3 \sqrt{3}}{2} & 0 & \frac{1}{2} & 0 \\
0 & 1 & 3 & -\frac{1}{4} & \frac{\sqrt{3}}{4} & 0 \\
0 & -2 & 2 & 0 & 0 & 1
\end{array}\right] R_{3} \leftarrow R_{3}+2 R_{2}} \\
& {\left[\begin{array}{ccc|ccc}
1 & \frac{\sqrt{3}}{2} & \frac{3 \sqrt{3}}{2} & 0 & \frac{1}{2} & 0 \\
0 & 1 & 3 & -\frac{1}{4} & \frac{\sqrt{3}}{4} & 0 \\
0 & 0 & 8 & -\frac{1}{2} & \frac{\sqrt{3}}{2} & 1
\end{array}\right] R_{3} \leftarrow \frac{1}{8} R_{3}} \\
& {\left[\begin{array}{ccc|ccc}
1 & \frac{\sqrt{3}}{2} & \frac{3 \sqrt{3}}{2} & 0 & \frac{1}{2} & 0 \\
0 & 1 & 3 & -\frac{1}{4} & \frac{\sqrt{3}}{4} & 0 \\
0 & 0 & 1 & -\frac{1}{16} & \frac{\sqrt{3}}{16} & \frac{1}{8}
\end{array}\right] \begin{array}{l}
R_{1} \leftarrow R_{1}-\frac{3 \sqrt{3}}{2} R_{3} \\
R_{2} \leftarrow R_{2}-3 R_{3}
\end{array}} \\
& {\left[\begin{array}{ccc|ccc}
1 & \frac{\sqrt{3}}{2} & 0 & \frac{3 \sqrt{3}}{32} & \frac{7}{32} & -\frac{3 \sqrt{3}}{16} \\
0 & 1 & 0 & -\frac{1}{16} & \frac{\sqrt{3}}{16} & -\frac{3}{8} \\
0 & 0 & 1 & -\frac{1}{16} & \frac{\sqrt{3}}{16} & \frac{1}{8}
\end{array}\right] R_{1} \leftarrow R_{1}-\frac{\sqrt{3}}{2} R_{2}\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & \frac{\sqrt{3}}{8} & \frac{1}{8} & 0 \\
0 & 1 & 0 & -\frac{1}{16} & \frac{\sqrt{3}}{16} & -\frac{3}{8} \\
0 & 0 & 1 & -\frac{1}{16} & \frac{\sqrt{3}}{16} & \frac{1}{8}
\end{array}\right] .} \\
& \text { Therefore, the inverse of }\left[\begin{array}{ccc}
2 \sqrt{3} & -1 & -3 \\
2 & \sqrt{3} & 3 \sqrt{3} \\
0 & -2 & 2
\end{array}\right] \text { is }\left[\begin{array}{ccc}
\frac{\sqrt{3}}{8} & \frac{1}{8} & 0 \\
-\frac{1}{16} & \frac{\sqrt{3}}{16} & -\frac{3}{8} \\
-\frac{1}{16} & \frac{\sqrt{3}}{16} & \frac{1}{8}
\end{array}\right] \text {. }
\end{aligned}
$$

7. Determine if the following vectors are linearly independent or linearly dependent. Justify your answer.
a) $\langle 1,2,4\rangle,\langle-1,2,3\rangle,\langle 0,3,-5\rangle$
b) $\langle 2,3,-5,8\rangle,\langle 3,7,9,10\rangle,\langle-4,-6,10,-16\rangle$
c) $\langle 23,35,57,79\rangle,\langle 23,34,45,56\rangle,\langle 87,76,65,54\rangle,\langle 54,43,32,32\rangle,\langle 35,50,75,23\rangle$
d) $\langle-3,2,5,4\rangle,\langle 3,7,8,-10\rangle,\langle 3,5,0,-9\rangle$
e) $\langle 1,2\rangle,\langle 3,-7\rangle,\langle 8,4\rangle$
f) $\langle 1,0,0,-3\rangle,\langle 0,1,2,0\rangle,\langle 1,-3,0,0\rangle,\langle 4,0,6,-9\rangle$

Solution:
a) $\left|\begin{array}{ccc}1 & -1 & 0 \\ 2 & 2 & 3 \\ 4 & 3 & -5\end{array}\right|=\left|\begin{array}{cc}2 & 3 \\ 3 & -5\end{array}\right|+\left|\begin{array}{cc}2 & 3 \\ 4 & -5\end{array}\right|=-19-22=-41 \neq 0$, so the vectors are linearly independent.
b) The vectors are linearly dependent, because $2\langle 2,3,-5,8\rangle+\langle-4,-6,10,-16\rangle=0$.
c) The vectors are linearly dependent as $5>4$ vectors in 4 -dimensional space.
d) Let $c_{1}\langle-3,2,5,4\rangle+c_{2}\langle 3,7,8,-10\rangle+c_{3}\langle 3,5,0,-9\rangle=0$.

The corresponding homogeneous system of linear equations for c_{1}, c_{2}, c_{3} has the matrix

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
-3 & 3 & 3 \\
2 & 7 & 5 \\
5 & 8 & 0 \\
4 & -10 & -9
\end{array}\right] R_{1} \leftarrow-\frac{1}{3} R_{1}\left[\begin{array}{ccc}
1 & -1 & -1 \\
2 & 7 & 5 \\
5 & 8 & 0 \\
4 & -10 & 9
\end{array}\right] \begin{array}{l}
R_{2} \leftarrow R_{2}-2 R_{1} \\
R_{3} \leftarrow R_{3}-5 R_{1} \\
R_{4} \leftarrow R_{4}-4 R_{1}
\end{array}} \\
& {\left[\begin{array}{ccc}
1 & -1 & -1 \\
0 & 9 & 7 \\
0 & 13 & 5 \\
0 & -6 & -5
\end{array}\right] \begin{array}{l}
R_{3} \leftarrow R_{3}+R_{4} \\
R_{3} \leftarrow \frac{1}{7} R_{3}
\end{array}\left[\begin{array}{ccc}
1 & -1 & -1 \\
0 & 9 & 7 \\
0 & 1 & 0 \\
0 & -6 & -5
\end{array}\right] \begin{array}{l}
R_{2} \leftarrow R_{2}-9 R_{3} \\
R_{4} \leftarrow R_{4}+6 R_{3}
\end{array}} \\
& {\left[\begin{array}{ccc}
1 & -1 & -1 \\
0 & 0 & 7 \\
0 & 1 & 0 \\
0 & 0 & -5
\end{array}\right] R_{2} \leftrightarrow R_{3}\left[\begin{array}{ccc}
1 & -1 & -1 \\
0 & 1 & 0 \\
0 & 0 & 7 \\
0 & 0 & -5
\end{array}\right] \begin{array}{l}
R_{3} \leftarrow \frac{1}{7} R_{3} \\
\left.R_{4} \leftarrow R_{4}+5 R_{3}\left[\begin{array}{ccc}
1 & -1 & -1 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] ~\right] ~
\end{array}}
\end{aligned}
$$

This implies that $c_{2}=c_{3}=0, c_{1}=c_{2}+c_{3}=0$, therefore the system has the unique solution $c_{1}=c_{2}=c_{3}=0$ and so the vectors are linearly independent.
e) The vectors are linearly dependent as $3>2$ vectors in 2-dimensional space.
f) $\left|\begin{array}{cccc}1 & 0 & 1 & 4 \\ 0 & 1 & -3 & 0 \\ 0 & 2 & 0 & 6 \\ -3 & 0 & 0 & -9\end{array}\right|=2(-3)\left|\begin{array}{cccc}1 & 0 & 1 & 4 \\ 0 & 1 & -3 & 0 \\ 0 & 1 & 0 & 3 \\ -1 & 0 & 0 & -3\end{array}\right|=-6\left|\begin{array}{cccc}1 & 0 & 1 & 4 \\ 0 & 1 & -3 & 0 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & -1 & -1\end{array}\right|=$
$=-6\left|\begin{array}{ccc}1 & -3 & 0 \\ 1 & 0 & 3 \\ 0 & -1 & -1\end{array}\right|=-6\left|\begin{array}{ccc}1 & -3 & 0 \\ 0 & 3 & 3 \\ 0 & -1 & -1\end{array}\right|=-6\left|\begin{array}{ccc}1 & -3 & 0 \\ 0 & 0 & 0 \\ 0 & -1 & -1\end{array}\right|=0$, therefore the vectors are linearly dependent.
8. Let u, v, w be vectors in 3 -dimensional space.
a) If $w=3 u+2 v$, express $v+w$ as a linear combination of u and w.
b) Prove that if u, v and w are linearly dependent, then $u-v, v$ and w are linearly dependent.
c) Is it true that if $u-v, v$ and w are linearly dependent, then u, v and w are linearly dependent? Justify your answer.
d) Is it true that if $u-v, v-w$ and $w-u$ are linearly dependent, then u, v and w are linearly dependent? Justify your answer.

Solution: a) Since $w=3 u+2 v, v=\frac{1}{2} w-\frac{3}{2} u$ and $v+w=\frac{1}{2} w-\frac{3}{2} u+w=-\frac{3}{2} u+\frac{3}{2} w$.
b) If u, v and w are linearly dependent, then there exist c_{1}, c_{2}, c_{3}, not all zeroes, such that $c_{1} u+c_{2} v+c_{3} w=0$. Then $0=c_{1} u+c_{2} v+c_{3} w=c_{1} u-c_{1} v+c_{1} v+c_{2} v+c_{3} w=$
$c_{1}(u-v)+\left(c_{1}+c_{2}\right) v+c_{3} w$, so 0 is expressed as a linear combination of $u-v, v$ and w. If all $c_{1}, c_{1}+c_{2}$ and c_{3} were zeroes, it would imply that $c_{1}=c_{2}=c_{3}=0$, which contradicts our assumption. Therefore $c_{1}, c_{1}+c_{2}$ and c_{3} are not all zeroes and $u-v, v$ and w are linearly dependent.
c) True. If $u-v, v$ and w are linearly dependent, then there exist c_{1}, c_{2}, c_{3}, not all zeroes, such that $c_{1}(u-v)+c_{2} v+c_{3} w=0$. Then $0=c_{1}(u-v)+c_{2} v+c_{3} w=$ $c_{1} u+\left(c_{2}-c_{1}\right) v+c_{3} w$, so 0 is expressed as a linear combination of u, v and w. If all $c_{1}, c_{2}-c_{1}$ and c_{3} were zeroes, it would imply that $c_{1}=c_{2}=c_{3}=0$, which contradicts our assumption. Therefore $c_{1}, c_{2}-c_{1}$ and c_{3} are not all zeroes and u, v and w are linearly dependent.
d) Not true. Vectors $u-v, v-w$ and $w-u$ are always linearly dependent, because their sum is equal to 0 . So as a counterexample we can take any 3 linearly independent vectors, for example, $u=\langle 1,0,0\rangle, v=\langle 0,1,0\rangle, w=\langle 0,1,1\rangle$.

