Math 1020/FA 1020 Math In Art

Instructors:

(A01) Tuesday & Thursday 8:30 – 9:45
(A02) Tuesday & Thursday 11:30 – 12:45
Derek Brueckner, Art Part (A01/A02)

Textbook: *Math and Art: An Introduction to Visual Mathematics* by Sasho Kalajdzievski and R. Padmanabhan. [**Note:** all of the royalties for the books sold in the U of M bookstore go back to students through scholarship funds.]

The main themes of study include: golden mean, golden rectangles, Fibonacci spirals, symmetries and other organizing principles, frieze patterns, wall paper groups, tilings & tessellations, fractals, string art and conics, perspective drawing, Platonic solids and regular polyhedra, Escher-style hyperbolic art, and isotopy and homotopy of topological objects.

Scheme of Evaluation:	
Art projects (format, deadline to be determined by Art Instructor)	40%
One Mid-Term Exam (to be set by 1020 Math instructors)	25%
Final Exam in December (2 hours, covers all topics, scheduled by registrar)	35%
Total	100%

MATH 1020 is not available to any student already holding a grade of "C" or better in any mathematics course with the exception of MATH 1010 or MATH 1190 or MATH 1191 (136.119). Not to be taken concurrently with any other mathematics courses with the exception of MATH 1010 or MATH 1190 or MATH 1191.

	Α	В	C	D
1	Day	MATH 1020 FA1020, A01& A02, Fall 2016	Math	Art
2		A tentative schedule of topics/dates	MD/DK	DB
3				
4	1	Introduction (45 min MATH/30 min FA)	8-Sep	8-Sep
5	2	Euclidean Constructions	13-Sep	
6	3	Art Lecture - Presentation of Art Assignment 1		15-Sep
7	4	Golden Ratio (1)	20-Sep	
8	5	Art Lecture		22-Sep
9	6	Golden Ration (2) and Fibonacci Sequence	27-Sep	
10	7	Art Lecture - Group discussion of classmates' projects in progress		29-Sep
11	8	Symmetries (1)	4-Oct	
12		Fall Break	6-Oct	10-Oct
13	9	Art Lecture		11-Oct
14	10	Symmetries (2)	13-Oct	
15	11	Art Lecture - Review of Art Assignment 1		18-Oct
16	12	Similarities - Art Assignment 1 Due (15%)	20-Oct	
17	13	Fractals	25-Oct	
18	14	Midterm Review	27-Oct	
19		Mid-Term Exam written out of class, at 5:30pm (25%)	27-Oct	
20	15	Art Lecture - Presentation of Art Assignment 2		1-Nov
21	16	Perspective	3-Nov	
22	17	Art Lecture		8-Nov
23	18	Conic Sections	10-Nov	
24	19	Platonic Solids and Planar Tilings	15-Nov	
25	20	Art Lecture - Group discussion of classmates' projects in progress		17-Nov
26	21	Hyperbolic Geometry (1)	22-Nov	
27	22	Art Lecture		24-Nov
28	23	Hyperbolic Geometry (2) and Topology (1)	29-Nov	
29	24	Topology (2)	1-Dec	
30	25	Art Lecture - Review of Art Assignment 2		6-Dec
31	26	Final Exam Review - Art assignment 2 due (25%)	8-Dec	
32		Final Exam (dates to be determined by $U \text{ of } M$) (35%)		
33		Art Assignments = 40%		
34		Mid-Term + Final Exam = $25\% + 35\% = 60\%$		
35				

Math 1020/FA 1020 Math In Art

Additional Information

Material covered (refer to the textbook):

Section	Pages	Suggested Problems
1.1. Euclidean Geometry	1-6	
1.2. Euclidean Constructions	6-14	18
1.3. Golden Ratio	14-24	111
1.4. Fibonacci numbers	24-31	16
2.1. Plane Symmetries	33-42	19
2.3. Groups of Symmetries	55-60	17
2.4. Frieze Patterns (part)	61-72	13
2.5. Wallpaper designs; Tilings (part)	72-81	
2.6. Tilings and Art (part)	81-89	
3.1. Similarities	91-100	17
3.3. Fractals (part)	100-123	14
3.4. Julia Sets (part)	123-131	13
4.1. Non-Euclidean Geometries	143-146	
4.2. Inversion	146	
4.3. Hyperbolic Geometry	153-158	
4.4. Hyperbolic Constructions	158-163	17
4.5. Tilings in Hyperbolic Plane (part)	163-167	
5.1. Perspective	169-181	19
5.3. Polyhedra (part)	197-206	14
5.4. Conic Sections (part)	206-216	16
6.1. Homotopy	223-230	16
6.2. Two-Manifolds and Euler (part)	230-237	16
6.3. Other Manifolds (overview only)	237-247	

Information about contacting your Instructor:

(A01) Dr. M. Davidson office: 469 Machray Hall phone: 204 474 8090 email: michelle.davidson@umanitoba.ca Office Hours: M/W/Th 1:30-2:30pm http://home.cc.umanitoba.ca/~davidsom/

(A02) Darja Kalajdzievska Office: 436 Machray Hall phone: 204 272 1609 email: kalajdzi@umanitoba.ca Office Hours: M/W 1:30-3pm http://server.math.umanitoba.ca/homepages/kalajdzi

Another web page which you might find useful http://server.maths.umanitoba.ca/homepages/sasho/

Using Copyrighted Material: Please respect copyright. We will use copyrighted content in this course. I have ensured that the content I use is appropriately acknowledged and is copied in accordance with copyright laws and University guidelines. Copyrighted works, including those created by me, are made available for private study and research and must not be distributed in any format without permission. Do not upload copyrighted works to a learning management system (such as UM Learn), or any website, unless an exception to the *Copyright Act* applies or written permission has been confirmed. For more information, see the University's Copyright Office website at http://umanitoba.ca/copyright/ or contact umanitoba.ca/copyright/ or contact <a hre

Recording Class Lectures: *Michelle Davidson, Darja Kalajdzievska* and the University of Manitoba hold copyright over the course materials, presentations and lectures which form part of this course. No audio or video recording of lectures or presentations is allowed in any format (including photographs), openly or surreptitiously, in whole or in part without permission. Course materials (both paper and digital) are for the participant's private study and research.

Course Technology: It is the general University of Manitoba policy that all technology resources are to be used in a responsible, efficient, ethical and legal manner. The student can use all technology in classroom setting only for educational purposes approved by instructor and/or the University of Manitoba Student Accessibility Services. Student should not participate in personal direct electronic messaging / posting activities (e-mail, texting, video or voice chat, wikis, blogs, social networking (e.g. Facebook) online and offline "gaming" during scheduled class time. If student is on call (emergency) the student should switch his/her cell phone on vibrate mode and leave the classroom before using it. (\bigcirc S_Kondrashov. Used with permission)

Students Accessibility Services: If you are a student with a disability, please contact SAS for academic accommodation supports and services such as note-taking, interpreting, assistive technology and exam accommodations. Students who have, or think they may have, a disability (e.g. mental illness, learning, medical, hearing, injury-related, visual) are invited to contact SAS to arrange a confidential consultation.

Student Accessibility Services http://umanitoba.ca/student/saa/accessibility/ 520 University Centre 204 474 7423 Student accessibility@umanitoba.ca

Grading: The grade cut-offs listed below show the minimum cut-off ranges for the course. These cut-offs may change (decrease) at the instructors' discretion.

Letter Grade	Percentage out of 100	Grade Point Range	Final Grade Point
A+	95-100	4.25-4.5	4.5
А	86-94	3.75-4.24	4.0
B+	80-85	3.25-3.74	3.5
В	72-29	2.75-3.24	3.0
C+	65-71	2.25-2.74	2.5
С	60-64	2.0-2.24	2.0
D	50-59	Less than 2.0	1.0
F	Less than 50		0

Note on Academic Honesty:

The Department of Mathematics, the Faculty of Science and the University of Manitoba regard acts of academic dishonesty in quizzes, tests, examinations or assignments as serious offenses and may assess a variety of penalties depending on the nature of the offense.

Acts of academic dishonesty include bringing unauthorized materials into a test or exam, copying from another student, plagiarism and examination personation. Students are advised to read section 7 (Academic Integrity) and section 4.2.8 (Examinations: Personations) in the "General Academic Regulations and Requirements" of the current Undergraduate Calendar. Note, in particular that cell phones and pagers are explicitly listed as unauthorized materials, and hence may not be present during tests or examinations.

Penalties for violation include being assigned a grade of zero on a test or assignment, being assigned a grade of "F" in a course, compulsory withdrawal from a course or program, suspension from a course/program/faculty or even expulsion from the University. For specific details about the nature of penalties that may be assessed upon conviction of an act of academic dishonesty, students are referred to University Policy 1202 (*Student Discipline Bylaw*) and to the Department of Mathematics policy concerning minimum penalties for acts of academic dishonesty.

The Student Discipline Bylaw is printed in its entirety in the Student Guide, and is also available on-line or through the Office of the University Secretary. Minimum penalties assessed by the Department of Mathematics for acts of academic dishonesty are available on the Department of Mathematics web-page.

All Faculty members (and their teaching assistants) have been instructed to be vigilant and report incidents of academic dishonesty to the Head of the Department.