### Linear Equations

What makes an equation linear?

$$3x + 4y = 2(x + y) + 7$$

- Variables
- Expression
- terms
- coefficient

# Equations in one variable, solve for $\boldsymbol{x}$

$$x + 4 = 7$$

$$3x = 9$$

$$x + \frac{2}{3} = \frac{4}{7}$$

## Equations in one variable, solve for $\boldsymbol{x}$

$$\frac{3}{5}x = \frac{4}{9}$$

$$5x + 4 = 4x + 3$$

$$7(x+3) = 2x - 8$$

$$\frac{1}{3}x + \frac{4}{5} = \frac{1}{2}x - \frac{3}{2}$$

$$\frac{x}{5} + 4 = 30 - \frac{2x}{3}$$

$$2(x+5) - 4(x+2) = 8x + 12$$

$$3(x-2)-4(x+1)=7-x$$

$$2(4-3x)+5(x+1)=11+x-2(x-1)$$

### Linear Inequalities

#### **Definition**

A *linear inequality* in x is an inequality that can be expressed in the form

$$ax \leq b$$
,

where a and b are constants where  $a \neq 0$ .

A linear inequality may also be expressed as one of the following:

- ▶ ax < b</p>
- ightharpoonup  $ax \ge b$
- ightharpoonup ax > b

## Inequalities in one variable, addition and subtraction

$$x$$
 + 2 ≥ 5

$$x - 7 < 12$$

### Inequalities in one variable, multiplication and division

$$3x \le 9 \qquad \qquad \frac{1}{2}x > 7$$

### Inequalities in one variable, multiplication and division

(Case 2: negative numbers)

$$-3x \le 9$$

$$-\frac{1}{2}x > 7$$

## Inequalities in one variable, solve for x

$$4x + 5 \ge 6x + 13$$

Inequalities in one variable, solve for x

$$3(2y-1)-2(4y-3) \ge 6y+2+5(1-y)$$

## Inequalities in one variable, solve for x

$$\frac{1}{2}(x-3)+5<\frac{1}{3}(2x+4)$$

### Cartesian coordinates



### Linear Equations in two variables

#### Definition

A *linear equation* in two variables x and y is an equation that an be expressed in the form Ax + By = C, where A,B, and C are numbers and A and B are not both zero.

This form is called the *general equation* of the line.

### Example: 4x + 3y = 12

What point is on the line that satisfies x = 0?

$$x = 5$$
?

$$y = 1$$
?

Graph 2x + 7y = 14



# Graph y = 3



## Graph 2x + 3y = 0



# Line passing through points (3,1) and (0,7)



## Slope

#### Definition

A line that passes through point  $(x_1, y_1)$  and  $(x_2, y_2)$  has a *slope* of m defined by

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

Horizontal lines have a slope of 0.

Vertical lines have an undefined slope (or a slope of  $\infty$ ).

### **Equations of Lines**

#### Definition

A linear equation written as  $y - y_1 = m(x - x_1)$  is said to be in point slope form.

#### Definition

A linear equation written as y = mx + b is said to be in *slope y-intercept* form.

Line passing through points (3,1) and (0,7)

Line passing through points (3,1) and (2,1)

Line passing through points (4,2) and (4,3)

### Example

Find the slope y-intercept form of the line through (0,12) and (6,21).

### Example

Find a general form of the line through (-1,5) having slope  $\frac{4}{7}$ .

### Intersection of two lines

Graph the lines y = x - 1 and 3x + 2y = 7.



### Intersection of two lines (substitution)

Find the point of intersection the lines y = x - 1 and 3x + 2y = 7.

## Intersection of two lines (elimination)

Find the intersection the lines 3x - y = 4 and 2x + 3y = 7.

### Intersection of two lines

Find the intersection the lines y = 2x + 1 and x + 4y = 20.

#### Intersection of two lines

Find the intersection the lines  $y = \frac{-2}{3}x + 2$  and 2x + 3y = 6.

#### Intersection of two lines

Find the intersection the lines  $y = \frac{5}{2}x - 3$  and 5x - 2y = 7.

#### parallel lines

#### Definition

Two distinct lines are *parallel* if they have no points in common.

#### **Theorem**

Two distinct lines are parallel if and only if they have the same slope.

## parallel lines example

Show the lines  $y = \frac{-3}{4} + 2$  and 3x + 4y = 10 are parallel.

# perpendicular lines

#### Definition

Two distinct lines are perpendicular if they intersect at right angles.

#### **Theorem**

Two distinct lines with non-zero slope are perpendicular if and only if

$$m_1 = \frac{-1}{m_2}$$

( ie. 
$$m_1m_2 = -1$$
)

# Are they Parallel? Perpendicular? Neither?

| line 1                            | line 2                           | conclusion |
|-----------------------------------|----------------------------------|------------|
| y = 3x - 3                        | $y = 3x - \frac{1}{7}$           |            |
| y = 5x + 7                        | y = -5x - 7                      |            |
| $y = \frac{-1}{3}x - \frac{3}{7}$ | y = 3x + 7                       |            |
| y = 4x + 2                        | $y = \frac{1}{4}x - \frac{1}{2}$ |            |

# Are they Parallel? Perpendicular? Neither?

| line 1                          | line 2       | conclusion |
|---------------------------------|--------------|------------|
| $\boxed{\frac{-1}{3}x + y = 2}$ | x + 3y = 2   |            |
| x + 2y = 7                      | 3x + 6y = 7  |            |
| 4x + 3y = 7                     | 4y - 3x = 12 |            |
| 3x + 2y = 7                     | 6x + 4y = 14 |            |

### Example

Find an equation of a line that passes through the point (4, -3) and is parallel to the line 4x + 3y = 7.

### Example

Find an equation of a line that passes through the point (4, -3) and is perpendicular to the line 4x + 3y = 7.

## Linear Inequalities in Two variables

#### Definition

A linear inequality in two variables x and y is an inequality that can be expressed in the form

$$Ax + By \leq C$$

where A, B, and C are numbers with A and B not both zero. The inequality symbol  $\leq$  could be replaced by <,  $\geq$  or >.

# $4x - 3y \le 12$

| point    | Satisfies Inequality? |
|----------|-----------------------|
| (0,0)    |                       |
| (2, -2)  |                       |
| (3,7)    |                       |
| (-1, -5) |                       |

 $4x - 3y \le 12$ 



2x + 5y < 10



# Systems of Linear Inequalities

#### Definition

The collection of all points that satisfy a number of inequalities is called a *feasible set*. A point in the feasible set is called a feasible point.

When we graph all of the inequalities in a system, the remaining unshaded points form the feasible set.

Graph the feasible set of the following system:





#### Graph the feasible set of the following system:

 $4x + 3y \le 6$ x + y < 3

 $x \ge 0$ 



Graph the feasible set of the following system (label all corners):  $3x - 2y \ge 1$ 

$$5x + 2y \le 23$$

$$x + 2y \ge 3$$



# Application Example

Jack and Dianne both sell cars. Jack makes \$800 a week plus \$10 commission for each car sold. Dianne makes \$500 a week plus \$25 commission for each car sold.

- Find a linear equation for Jack's weekly income (y) in terms of the number of cars sold (x).
- ► Find a linear equation for Dianne's weekly income (y) in terms of the number of cars sold (x).
- Find and interpret the y-intercepts of these lines.
- For what number of cars do Jack and Dianne receive the same income? What is that income?

# Application Example

The Nifty Nut company makes two kinds of GORP. Plenty Peanuts is  $\frac{1}{2}$  peanuts and  $\frac{1}{2}$  raisins. Raisin D'etre is  $\frac{2}{5}$  peanuts and  $\frac{3}{5}$  raisins. They currently have 220kg of peanuts and 280kg of raisins in stock.

► How much of each type of GORP should they make to use all of their supply?

Support your answer. Be sure to identify the variables used.

# Application example

In Canada, the consumptions of Fluffernutters has decreased steadily since 1990, as shown by the equation

$$y = -\frac{1}{10}x + 24$$

where y is the amount of Fluffernutter consumed (in millions of kg's), and x is the number of years since 1990.

- ▶ What interpertation can be given to the x-intercept?
- What interpertation can be given to the y-intercept?
- When will the consumption be 17 million kg's?

# Application example

The following data has been collected on the time it takes to register participants in an online game.

| NI I C                 |                                 |
|------------------------|---------------------------------|
| Number of participants | time to completion (in seconds) |
| 2                      | 25                              |
| 3                      | 27                              |
| 5                      | 31                              |
| 7                      | 35                              |

- ▶ Show that there is a linear relationship between the time to completion (y) and the number of participants (x).
- What is the slope and what does it represent?
- Find and interpret the y-intercept.

# Application Example

Two companies are being considered for water delivery to a small office. Company A charges \$30 for delivery and \$5 for each 10 litre jug. Company B charges \$50 for delivery and \$3 for each 10 litre jug.

- ► For each company, find a linear equation for the total cost (y) of the delivery of x jugs of water.
- If the office needs 9 jugs of water a week, which is the best company for them?
- ► What number of jugs would cost the same from both companies? What would that cost be?