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Abstract: The ideal free distribution (IFD) of behavioral ecology has been used in the study of the distribution of fishing
effort since the 1990s. Concurrently, evolutionary perspectives on forager distributions have led to the development of theo-
retical curves of equal fitness, named isodars, to test IFD hypotheses. We develop isodars, based upon catch rates and un-
known costs, to quantify regularity in the distribution of fishing effort among alternative areas. Our analyses indicate that
these isodars provide significantly better predictions than a simple IFD without costs. Autocorrelation in the catch and effort
data necessitates the use of generalized linear least squares when estimating model parameters. Differences in costs that are
proportional to effort are more clearly identified in the model than nonlinear effects, which may arise from extreme interfer-
ence competition. The isodar approach provides a new tool for examining the spatial dynamics of catch and effort data. It
improves the accuracy of predictions and provides new parameters related to costs and vessel interactions that can be ap-
plied to rapidly identify situations where effort dynamics have changed.

Résumé : Le concept de la distribution libre idéale (IFD) du domaine de l’écologie comportementale a été utilisé pour étu-
dier la distribution de l’effort de pêche depuis les années 1990. En parallèle, des perspectives évolutionnaires sur la réparti-
tion des fourrageurs ont mené à l’élaboration de courbes théoriques de valeur sélective identique, appelées isodars, afin de
vérifier des hypothèses relatives à l’IFD. Nous avons établi des isodars, basés sur les taux de prise et les coûts inconnus,
dans le but de quantifier la régularité de la répartition de l’effort de pêche dans différentes régions. Nos analyses indiquent
que ces isodars donnent des prévisions significativement meilleures que la simple IFD appliquée sans y intégrer de coûts.
L’autocorrélation dans les données sur les prises et l’effort nécessite l’utilisation de moindres carrés généralisés linéaires
pour estimer les paramètres du modèle. Les différences de coûts proportionnelles à l’effort sont plus clairement cernées
dans le modèle que les effets non-linéaires, ce qui peut découler d’une extrême compétition par interférence. L’approche ba-
sée sur les isodars constitue un nouvel outil pour étudier la dynamique spatiale des données sur les prises et l’effort. Elle
améliore l’exactitude des prévisions et fournit de nouveaux paramètres relatifs aux coûts et aux interactions de navires qui
peuvent être utilisés pour cerner rapidement des situations où la dynamique de l’effort a changé.

[Traduit par la Rédaction]

Introduction

Since its inception, the ideal free distribution (IFD; Fret-
well and Lucas 1969; Fretwell 1972) has seen broad applica-
tion in the study of spatial distributions across taxa (Kennedy
and Gray 1993; Houston 2008) and within fisheries (Gillis et
al. 1993; Rijnsdorp et al. 2000b; Poos et al. 2010). Briefly, it
predicts that when interference competition exists, effort allo-
cation is unrestricted, and information flows freely among
foragers, the productivity (catch value divided by costs) will
tend to be equalized among all locations. This is an example
of an n-person, frequency-dependent game (Maynard Smith
1982; Křivan et al. 2008). The dynamics of the IFD follow

from the same logic as Gordon’s classical paper on the com-
mon property nature of fisheries, specifically that the reallo-
cation of fishing effort between two simultaneously exploited
fishing grounds should continue “… until the average pro-
ductivity of both grounds [is] equal” (Gordon 1954, p. 131).
The IFD continues to be topical in ecology today (Griffen
2009; Matsumura et al. 2010) and remains part of the theory
used to examine the behaviour of fish harvesters (Branch et
al. 2006; van Putten et al. 2012).
In spatially structured fisheries, the IFD suggests that the

proportion of effort in an area will tend to equal the propor-
tion of catch taken from that area (Gillis et al. 1993; Gillis
2003). This provides a starting point for the investigation
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(Abrahams and Healey 1993; Swain and Sinclair 1994) and
modeling (Gillis and Peterman 1998; Cox et al. 2003) of
fisheries systems, which have proven useful in past studies.
For example, applications of the IFD have shown that fishing
effort tracked changes in distribution of Atlantic cod (Gadus
morhua) abundance on the Scotian Shelf (Gillis and Frank
2001) and snow crab (Chionoecetes opilio) in the Gulf of
St. Lawrence (Swain and Wade 2003). The IFD in fisheries
research has been criticised as being too simplistic (Holland
and Sutinen 1999) and has been found to fail to predict effort
distributions in specific fisheries (Pet-Soede et al. 2001;
Abernethy et al. 2007), especially when one or more of its
underlying assumptions are strongly violated. However, its
simplicity is an asset as a conceptual model and when data
are limited to the spatial record of catch and effort. Further-
more, its assumptions can provide a framework to investigate
the underlying mechanisms and constraints when the IFD is
found not to apply.
Though IFD predictions can be based upon measured for-

aging or catch rates, Morris (1988, 2003) developed a meth-
odology, the “isodar”, which predicts numbers in one area
based upon the numbers in an alternative area and explicit
expressions of local, density-dependent per capita fitness.
The resulting curve defines the combinations of numbers in
each area that result in equal fitness among all individuals at
all locations. This is termed an “isodar” as a contraction of
“iso-Darwin”. The method was originally demonstrated with
rodents (Morris 1988), but has been extended to fish in lake
basins (Haugen et al. 2006) and even human settlement pat-
terns between urban and rural areas (Morris and Kingston
2002). The definition of an isodar requires (i) the identifica-
tion of a density-dependent fitness function for the foraging
areas, (ii) the statement of the equation that defines equal
per capita fitness among areas, and (iii) the rearrangement of
the equation so that the numbers in one area are predicted by
the numbers in the other. Morris and Kingston (2002) used

the population growth rates of the theta-logistic as the basis
of per capita fitness; Haugen et al. (2006) used movement,
survival, and fecundity data. We will base our initial esti-
mates of per capita “fitness” on the average catch rates (cal-
culated from aggregated catch and effort statistics)
experienced among the areas fished. This choice is based
upon productivity, defined as catch value divided by costs,
where costs are proportional to nominal effort. Then, alterna-
tive cost expressions will be considered, based upon previous
behavioural studies.

Materials and methods

The fishery data
The performance of alternate isodar models was examined

using data from the Nova Scotian haddock (Melanogrammus
aeglefinus) fishery in Northwest Atlantic Fisheries Organiza-
tion (NAFO) Division 4X. This was a subset of data from a
larger study contrasting discrete choice and aggregate ap-
proaches to modelling vessel distribution (A. van der Lee
and D.M. Gillis, unpublished data). In this paper, we fo-
cused on trawlers fishing around the Browns Bank regula-
tory closure and defined aggregations of effort to the east
and west of the closure, as well as an area north of the clo-
sure and closer to shore. The delineation of the areas consid-
ered and the spatial scale of the study is illustrated (Fig. 1).
Haddock is the common target species in this fishery, but
other species are also regularly captured either deliberately
or as bycatch. These species include redfish (Sebastes spp.),
pollock (Pollachius virens), Atlantic cod, and flounders
(Pleuronectiformes). To account for this, all catches were
converted to their Canadian dollar value using weekly
landed prices in Nova Scotian ports available from the Web
site of the Prince Edward Island Department of Fisheries,
Aquaculture and Rural Development (http://www.gov.pe.ca/
fard/index.php3?number=1024862, accessed May 2011).

Fig. 1. Fishing activity around the Browns Bank regulatory closure. Fishing areas were defined based upon the observed distribution of fish-
ing effort, illustrated as points in this figure, into three principle areas: east of the Browns Bank (E), west of Browns Bank (W), and north of
Browns Bank (N). The position of the study area relative to eastern Canada is indicated on the inset map (NB – New Brunswick, QC –
Quebec, PE – Prince Edward Island, NS – Nova Scotia, NL – Newfoundland). Only fishing activity between 1 February and 15 June for each
year studied (2005–2008) was used for model comparisons.
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Thus, our “catch” is a price-corrected revenue that incorpo-
rates the multispecies nature of the fishery and the weekly
variation in price by species and size class through the pe-
riod examined. Quantified fishing effort (including both
time and location) was obtained from mandatory logbook re-
cords maintained by the Marine Fish Division of Fisheries
and Oceans Canada (Dartmouth, Nova Scotia). Data on
catch (value landed) and effort (hours fished) was aggre-
gated weekly for each area (Fig. 1) from 2005 to 2008.
Though typical in many ways, these data are not intended to
represent all trawl fisheries. In addition to reflecting the fleet
dynamics of this fishery, these data also provided an oppor-
tunity to develop a methodology to examine alternate mod-
els that could be applied to other fisheries in the future.

The models compared
The definition of accurate isodars depends upon the selec-

tion of an appropriate model to represent the density-
dependent “fitness” of each of the foraging areas being uti-
lized. We developed four isodars, based upon conceptual
models of increasing complexity, to select the most parsimo-
nious relationship describing the resulting effort distribution
under active area selection.

The ideal free distribution (IFD) without costs
Earlier applications of IFD have focused on the first ap-

proximation solution, disregarding potential costs, which we
shall refer to as the simple IFD model. In this case, the esti-
mate of production is the revenue from the catch. Productiv-
ity is provided by the catch rates, which should be equalized
among all foraging areas at equilibrium. This would result in
the proportion of catch taken from each area equalling the
proportion of total effort expended in that area (Gillis 2003).
Alternatively, this can be used to define an isodar that pre-
dicts the numbers in one area from the numbers in the other.
When catch rate is equalized between two areas, then

ð1Þ C2

f2
¼ C1

f1

where C1 and C2 are the catch taken from areas 1 and 2 in
the time examined (1 week), and f1 and f2 are the total
amount of nominal fishing effort (hours fished) in each area
through the same time period. This relationship can be rear-
ranged to define an isodar that predicts the effort in the sec-
ond area based upon the catches and the effort in the first
area:

ð2Þ logðf2Þ ¼ �log
C1

C2

� �
þ logðf1Þ

On a logarithmic scale, this represents a linear relationship
with a slope of 1 and an intercept of –log(C1/C2). This is true
for any logarithmic base, but we use natural logarithms in our
models and analyses. No parameter estimates are required to
apply this model; the prediction of f2 is based entirely on the
values of the other variables. Furthermore, if C1/C2 can be
treated as a constant value, a single line will describe the re-
lationship. However, catches taken from neighbouring areas
will often differ among the times considered (weeks or
months). In these cases, predictions will be made from a

number of parallel lines of slope 1 and intercepts reflecting
the changing catches.

Constant catch rate ratio (CCR)
Hilborn and Ledbetter (1979) suggested that differences in

the costs between areas could result in catch rates that dif-
fered among areas but maintained a constant ratio. This as-
sumes that productivity remains equalized among areas, and
the variation in costs is represented in the ratio of catch rates
among areas. These costs were stated to represent differing
“desirability” among fishing areas, which was related to their
unique operating costs and risks. Furthermore, for the ratio to
be constant these costs would have to scale with the effort
expended. Their conceptual model can be represented mathe-
matically as

ð3Þ C2

f2
¼ ea � C1

f1

where ea is the proportionality constant expressed as a power
of e, the base of natural logarithms. The resulting isodar pre-
dicting the effort in the second area is

ð4Þ logðf2Þ ¼ a� log
C1

C2

� �� �
þ logðf1Þ

Constant productivity ratio with common nonlinear effort
effects (CPRc)
Factors that do not scale proportionally with changing ef-

fort may not be adequately represented by the model of
eq. 3. Interference competition among foragers (Hassel and
Varley 1969) is a well-known ecological factor that could
cause this effect. The impact of different levels of interfer-
ence on IFD was introduced by Sutherland (1983), developed
theoretically for IFDs in a fisheries context (Gillis and Peter-
man 1998), and related to isodar theory by Morris (1994).
When interference is not proportional to forager density, the
costs of additional foraging can increase in a nonlinear fash-
ion. In a fishery, these costs could be realized immediately
(i.e., course alterations in crowded grounds) or they could be
more probabilistic in nature (i.e., risk of gear entanglement).
Thus, a doubling of effort in an area would not double the
costs, but would result in some greater value. A simple way
to represent such costs in our model is by adding an expo-
nent to effort, so that productivity is represented by C/f b
rather than simply the catch rate C/f. A b that is greater than
1 represents a negative impact on productivity that occurs in
a disproportionate, nonlinear manner in relation to increasing
effort. When this effect is common between areas, equalized
productivity can be represented as

ð5Þ C2

f
b
2

¼ ea � C1

f
b
1

and the resulting isodar is

ð6Þ logðf2Þ ¼ 1

b
� a� log

C1

C2

� �� �
þ logðf1Þ

Constant productivity ratio with unique nonlinear effort
effects in each area (CPRu)
The final productivity model considered is similar to eq. 5,

but allows for unique nonlinear effort effects in each area:
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ð7Þ C2

f
b2
2

¼ ea � C1

f
b1
1

This can be rearranged into the isodar predicting the effort in
area 2 from the other measured variables:

ð8Þ logðf2Þ ¼ 1

b2
� a� log

C1

C2

� �� �
þ b1

b2
� logðf1Þ

The progression through each these models follows a com-
mon productivity model based upon the ratio of catch to
costs:

ð9Þ Productivity ¼ Ci

Ki � f bii

where Ci is the total value of the catch in area i, Ki is an
area-specific cost coefficient, and bi is an exponent that de-
fines the relationship between effort and effort-related costs.
When the bi values are greater than 1, the costs increase dis-
proportionately with effort, as discussed in the context of in-
terference above. When all bi values are equal to 1, the
expected ratio of catch rates becomes the ratio of the cost
coefficients (Ki), resulting in Hilborn and Ledbetter’s (1979)
model and the isodar in eq. 4. When the cost coefficients are
identical, the isodar is developed from the original IFD
(eq. 2). In this representation of costs, Ki � f bii , the parameters
Ki and bi do not directly relate to specific influences. Instead,
they define an empirical relationship that represents a variety
of cost structures with minimum complexity.

Statistical methods

Parameter estimation (fitting the models)
None of the models that we examined could be represented

by classical linear regression, so nonlinear methods were used
to estimate the values of their parameters using the R statisti-
cal language (R Development Core Team 2011). It is likely
that spatial distributions of vessels will be correlated among
weeks, and the act of aggregating data itself can result in au-
tocorrelated errors around model predictions (Granger and
Morris 1976). Therefore, we employed generalized nonlinear
least squares using the gnls() function from the nlme library
(Pinheiro et al. 2010). Initial parameter estimates were set to
1 for all b values and 0 for a values. Autocorrelation was vis-
ually examined by inspection of the autocorrelation function
out to a lag of 5 weeks. Autocorrelation was represented in
the models as an autoregressive moving average (ARMA)
process whose order (p autoregressive terms and q moving
average terms) was determined by comparing the sample-
size-corrected Akaike information criterion (AICc) values of
different orders (Brockwell and Davis 1991). AICc is a refine-
ment of AIC that controls for biases caused by small sample
sizes in model selection (Anderson 2008). AICc was chosen
over AIC to reduce the tendency to overparameterize ARMA
models. AICc was chosen over the Bayesian or Schwarz infor-
mation criterion because of the relatively small sample sizes
(53–70) relative to the number of parameters (3–7) estimated.
For parsimony, only cases where p′ + q′ ≤ p were consid-
ered, where p′ and q′ are the orders of the ARMA model,
and p is the order of the simpler autoregressive (AR) model.
Thus, the final model had a number of parameters (k) equal to

the number of parameters of the isodar model (one to three),
plus one for the variance estimate, plus (p + q) for the auto-
correlation. The autocorrelation function, based upon resid-
uals that were normalized by the correlation structure, was
examined to ensure that the ARMA model had removed the
effects of autocorrelation from the parameter estimates. In all
cases, no lag had a significant autocorrelation (p < 0.05).

Model comparison and selection
Typically, isodars are examined by plotting the forager den-

sities (or logarithm of the densities) observed on each other to
reveal the underlying relationship. This is effective when hab-
itat quality varies much more slowly than the foragers can re-
distribute themselves. However, in our case area quality
varied within each season because of unobserved factors that
influenced local availability of fish, such as fish movement
among adjacent areas. Instead, we illustrated our models by
plotting the observed logarithm of effort in the predicted area
on the prediction based upon the other variables. The linear
regression of these values provided an indication of model
quality. This empirical regression was compared with the the-
oretical regression (intercept = 0, slope = 1) that would indi-
cate a perfect fit. However, these figures and regressions were
not used for model selection. The choice of the isodar model
that best reflected the data was entirely based upon the lowest
AICc value, as described above.

Results

Model comparison and selection
The simple IFD model’s predictions were strongly corre-

lated to the observed values, but these predictions were consis-
tently biased in each of the cases examined (Fig. 2). The IFD
tended to underestimate effort at low values, but the predic-
tions and observations agreed more closely at higher effort val-
ues. The CCR model showed some improvement, but the
addition of nonlinear effort effects in the CPRc and CPRu
models finally brought predictions and observations into align-
ment. The closest agreement was seen with the most complex
model (CPRu), which allowed for unique nonlinear effort ef-
fects within the areas. This pattern is reflected in the confi-
dence intervals (CIs) for the slope of the observed on
predicted lines (Table 1). The CIs of both the IFD and CCR
models have slopes that do not encompass 1. However, a slope
of 1 is within the CIs for both the CPRc and CPRu models.
These results are consistent among all of the area comparisons
examined. In the case of the CPRu, it is difficult to see the
deviation between the predicted and observed lines (Fig. 2).
The effect of increasing model complexity can also be

seen in the change in outliers on the plot of observed and
predicted effort values. In particular, the deviation observed
around the line when predicting northern effort from western
effort using the CCR model (Fig. 2) shows an extreme outlier
at the lower right. Examination of the original data revealed
that this was a week with relatively low total effort (22 h,
median for all weeks = 279) and a large variation in catch
rates between areas (13.7 times greater CPUE in the west,
median for all weeks = 3.5). The incorporation of the nonlin-
ear effort parameter significantly improved the placement of
this, and other outliers, as seen in the CPRc and CPRu model
fits (Fig. 2). However, this point still remained one of the
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Table 1. Isodar model comparisons.

Area Model n K ARMA CIlower CIupper AICc DAICc

N–E IFD 53 NA NA 0.586 0.730 NA NA
CCR 53 3 AR(1) 0.586 0.730 124.77 47.80
CPRc 53 4 AR(1) 0.821 1.020 81.32 4.34
CPRu 53 4 NULL 0.897 1.103 76.97 0.00

N–W IFD 70 NA NA 0.567 0.775 NA NA
CCR 70 3 ARMA(0,1) 0.567 0.775 184.75 36.78
CPRc 70 5 ARMA(1,1) 0.782 1.095 148.01 0.04
CPRu 70 7 ARMA(3,0) 0.894 1.231 147.97 0.00

W–E IFD 57 NA NA 0.610 0.817 NA NA
CCR 57 4 ARMA(1,1) 0.578 0.878 137.21 22.80
CPRc 57 6 ARMA(3,0) 0.697 1.085 114.48 0.07
CPRu 57 7 ARMA(3,0) 0.768 1.143 114.41 0.00

Note: The quality of each model’s predictions is presented for the three area relationships examined. The effort is pre-
dicted for the North (N) and East (E) areas from the effort in the East and West (W) areas. For each model, the number of
weeks (n), the total number of parameters estimated (K), and the order of the autoregressive moving average (ARMA)
model used to account for autocorrelation in residuals is provided. The quality of the models is indicated by the 95% con-
fidence intervals of the observed–predicted regressions (CIlower, CIupper) corresponding to Fig. 2, the AICc, and the DAICc
values of the fitted models.

Fig. 2. Predictive performance of each isodar formulation examined. The models used are indicated at the right of the graphs, and the areas
examined are indicated along the top of the graphs. Each point represents the amount of effort predicted in the area of interest (North, East,
and West) and the amount of effort observed in that area during the same week. The dashed line represents the 1:1 line that indicates perfect
agreement between the model’s predictions and the observations. The solid line is the least squares regression of observed on predicted effort.
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most distant from the predicted relationship. Overall, the im-
provement in the relationship between predicted and ob-
served values among models is more noticeable than the
influence on any specific data point.
Our formal model selection, using AICc, showed consis-

tently increasing model quality with each refinement (Ta-
ble 1). The simple IFD model does not directly enter into
these comparisons, as no parameters were estimated. How-
ever, it can be dismissed because of the general pattern of de-
creasing AICc values as the models differ more from it. The
lowest AICc value was obtained with the CPRu model in all
of the models examined. However, in the cases of the North–
West and West–East relationships, the difference in AICc be-
tween CPRu and CPRc was slight — less than 0.1 and much
less than the typical threshold value of 2 (Burnham and An-
derson 2002), which indicates models having similar levels
of support in the data.
The form of autocorrelation in residuals varied among the

models examined (Table 1). In the North–East CPRu model,
there was no significant autocorrelation, but significant autor-
egressive patterns (lag 1) in the CPRc and CCR models. In
the other areas, the autocorrelation varied among MA(1),
ARMA(1,1) and AR(3) processes. This added to the number
of parameters in the models, reaching a maximum of seven
for the CPRu form of the North–West and West–East models,
which both had autoregressive correlation structures suggest-
ing influences out to 3 weeks.

Parameters of the best model
The a values of the CPRu models (Table 2), representing

ratios between the areas measured at one unit of effort, show
their greatest values in the prediction of log(effort) in the
North area from either the East or West areas (2.08 and
2.34, respectively) in contrast with the small a value when
predicting log(effort) in the West area from the East area
(0.26), which are both located in open ocean adjacent to
Browns Bank. Closer examination of the West area predic-
tion revealed that the CI for a spanned 0. Furthermore, an al-
ternate model that excluded a (CPRu – a) while retaining the
b values had a lower AICc (112.05) than the CPRu model.
These results indicated that there was no evidence for differ-
ences in the productivity ratios between the areas that could
not be associated with nonlinear effort effects (b values).

The estimates and 95% CIs for all of the b values indicate
that they are larger than 1. However, the width of the CIs re-
sults in substantial overlap between areas (Table 2), even
though AICc selected the model with unique b values (Ta-
ble 1). Though there is strong evidence to suggest nonlinearity,
the evidence for area-specific effects is substantially weaker.

Discussion
The isodar approach that we develop has clear advantages

over earlier applications of the IFD to commercial fisheries.
First, the isodar makes predictions in terms of numerical ef-
fort, rather than percentages. This circumvents the statistical
issues associated with proportions and allows direct compari-
sons to observed effort values. Second, it allows the estima-
tion of additional parameters that empirically represent the
possible effect of costs and risks on the distribution of fish-
ing effort. This results in better agreement between the model
and the data according to information-theoretic criteria and is
illustrated by the improved relationship between observed
and predicted effort in an area when this prediction is based
upon a combination of observed catch in both areas and ef-
fort in the alternative area. Third, a single productivity model
unites all of the empirical models examined, of which the
IFD, based on catch rates, is a special case.
Previous tests of the IFD in fisheries contexts have exam-

ined the proportional distribution of effort in relation to the
proportional distribution of catch (Gillis et al. 1993) or di-
rectly tested for the equalization of productivity among areas
fished or the relationship between the resource and forager
distributions (Abernethy et al. 2007). There can be difficul-
ties with each of these approaches. Testing for equalization
in catch or catch rates can easily miss relevant cost effects
that may not be recognized or easily quantified a priori. Hil-
born and Ledbetter (1979) suggested a constant ratio of catch
rates could be a first approximation in accounting for these
unknown factors (the basis of our CCR model). They sug-
gested that alternate areas could differ in “desirability”,
which could be related to the risk of damage or injury asso-
ciated with more open waters. Abernethy et al. (2007) found
that lifestyle choices apart from monetary costs were associ-
ated with consistent differences between alternative fishing
strategies (i.e., catch rates were not equalized among alterna-
tives). Differences like this, when found, are very informa-

Table 2. Parameter estimates from the constant productivity model with
unique nonlinearities in effort between the areas (CPRu).

Areas Parameter Estimate CIlower CIupper
North–East a 2.083 1.094 3.072

bEast 1.182 1.042 1.322
bNorth 1.462 1.312 1.612

North–West a 2.338 0.828 3.848
bWest 1.418 1.165 1.672
bNorth 1.675 1.394 1.955

West–East a 0.259 –0.803 1.321
bEast 1.248 1.091 1.405
bWest 1.389 1.194 1.584

Note: This model predicts the effort in one area from the other; for example,
the first model listed predicts effort in the North from effort in the East during
the same week. Model parameter estimates are presented with their 95% confi-
dence limits (CIlower, CIupper). See text for parameter definitions.
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tive, as sample size and variability (low to moderate statisti-
cal power; Peterman 1990) will tend to mask differences and
favour acceptance of the IFD-based hypothesis of equal catch
rates. Abernethy et al. (2007) also compared the distribution
of fishing effort and independently surveyed resource abun-
dances and found them to be unrelated. However, their sur-
vey estimates differed from the perspective of the fishers,
suggesting imperfect knowledge within the fishery, a poten-
tially important violation of the IFD assumptions (but see
Gillis 2003; Griffen 2009).
The examination of proportional catch and proportional ef-

fort among alternative fishing areas allows a direct test of the
IFD outcome (equalization of catch rates) across a range of
effort and catch values (Gillis et al. 1993; Gillis 2003), which
focuses on the identification of a relationship rather than the
rejection of the null hypothesis of randomness. However, it
does not readily allow for factors, such as cost or risk, unless
they can be incorporated into the “catch” values before the
analysis by subtracting their associated costs and examining
the resulting “adjusted catch”. For costs that vary with effort,
this is not a useful approach. Proportional data require trans-
formation prior to regression to avoid biases caused by the
restriction of values between 0 and 1. Finally, irregular devi-
ations from the expected 1:1 line are often observed (Gillis
2003) but not easily interpreted. For example, a low propor-
tion of effort in an area may occur when overall effort is
high, and conversely a high proportion could be observed
when very little fishing is occurring. Processes that vary
with the amount of fishing activity, like interference, will not
be well represented by statistical models based upon propor-
tions. This mathematical representation of the IFD is useful
as a first approximation for exploratory data analysis and a
visual representation of the perspective that proportional ef-
fort should follow the proportion of catch from each area.
Unfortunately, it is a poor choice for developing more refined
empirical models of effort dynamics.
Isodar-based effort predictions are easier to treat statisti-

cally, even on a logarithmic scale. They lack the difficulties
in interpreting patterns found with percentages. However, the
construction of our isodars departs somewhat from previous
work. Environmental quality is often examined on an annual
basis (Morris and Kingston 2002; Haugen et al. 2006), where
the quality of alternate habitats varies much more slowly than
the rate at which foragers can disperse and redistribute them-
selves. In contrast, we are attempting to model effort re-
sponses to short-term (weekly) changes in habitat quality.
These are common, in part because regulatory boundaries
often divide natural fish habitat in an arbitrary manner. For
example, the West area is close to the boundary with another
area outside of our data set (NAFO Division 5Z), which
shares ecologically contiguous habitat through which fish
regularly move. To account for rapid variation in quality, we
initially assume that the relative resource availability in each
area is approximated by the relative catch value taken from
that area (our simple IFD-based isodar). Though this method
has some predictive value, there was also clear bias. Our
more complex models attempt to address the departures of
this model’s predictions using parameters that represent dif-
ferences between the areas that are proportional and nonlin-
ear effects of increasing effort.
The CCR model showed some improvement over the sim-

ple IFD isodar. The addition of a “proportionality parame-
ter” (a) allowed us to represent consistent differences
between the fishing areas. Differences such as these could re-
sult in costs that scale proportionally with effort, similar to
the “qualitative” differences among areas in Morris’ (1988)
development of isodar theory. However, biased predictions
were still evident. These biases could be generated by fish
availability or cost differences among areas that were not re-
lated to the effort expended, what Morris (1988) termed
“quantitative” differences among areas. In isodar theory, this
can result in a positive intercept in the curve that describes
the relationship in forager numbers between two areas. In
our formulation, quantitative differences would initially result
in more effort being expended in the area with higher avail-
ability or lower cost. As effort increased, the impact of these
fixed differences on productivity would become less impor-
tant. Instead, additional effort would cause an increase in
costs and reduced fishing success (i.e., the density-dependent
aspect of productivity). The result would be increasing uti-
lization of the “poorer” area with increases in total effort ex-
pended across both areas.
The CPRc and CPRu models, with their exponents (b) for

nonlinear effort effects, reduced apparent biases in the pre-
dicted effort to more acceptable levels. The exponents al-
lowed the productivity term (C/f b) to be reduced
disproportionately with increasing levels of effort. The more
rapid reduction in productivity was indicated by the esti-
mated b values that were all greater than 1. It is conceivable
that enhanced efficiency with greater local vessel numbers
could result in b values less than 1, but this was not ob-
served. The reduction in the efficiency of effort that is indi-
cated by these parameter estimates could result from
different factors. The numerical effect of quantitative differ-
ences in an isodar framework was described above. Another
possible cause is the presence of interference among fishing
vessels (Gillis 1999; Rijnsdorp et al. 2000a, 2000b; Poos
and Rijnsdorp 2007). Additional vessels may not simply
“share” the resources equally, but may cause more effort to
be marginalized into sites with lower fish abundance. Fish
tend to be heterogeneously distributed, concentrating in lo-
cally favourable habitat within any larger areas defined for re-
search or management purposes. Limitations to the total
amount of gear that can be deployed on these concentrations
can force additional effort into surrounding habitat where fish
abundance and fishing success are lower. In this way, hetero-
geneity in bathymetry, habitat composition, and fish distribu-
tions within the defined areas could interact with vessel
behaviour to generate nonlinear effort effects. Greater local
vessel densities may also directly increase risks and costs
through increasing gear entanglement or course adjustments
to avoid such events. The resulting reversible decline in over-
all fleet efficiency will occur even if fish abundance is not
appreciably altered (interference competition). Either effort
displacement or increased local costs (or risks) could be real-
ized as interference. This interference competition would gen-
erate “undermatching”, as reviewed by Kennedy and Gray
(1993), where the proportion of foragers found in better hab-
itats is below the IFD predictions. The impact of interference
would be likely to scale nonlinearly with the number of ves-
sels, as doubling the vessel density would more than double
the encounter rate. This nonlinearity is similar to the repre-
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sentation of encounter in classical ecological models. For ex-
ample, in the logistic equation the potential population
growth rate increases linearly with population size, but the
magnitude of the negative effects of intraspecific interactions
that limit this growth increases according to the square of
population size.
Though model refinements tended to reduce the magnitude

of extreme outliers, they were not eliminated. Various factors
could contribute to specific weeks or groups of weeks fitting
our model more poorly. For example, weeks with low total
effort may leave an area poorly explored and violate the
“ideal knowledge” assumption of the IFD to a greater extent
than weeks with greater fleet activity. The effect of differen-
ces in travel costs among areas would also vary with the
amount of effort expended in an area, being less important
when effort in an area is high within a trip. The impact of
such factors will vary among fisheries and through time
within a fishery. However, costs related to effort (density-
dependent factors) dominate, so we can expect patterns such
as those that we have modeled to be evident in the aggre-
gated catch and effort data.
The current parameterization does not allow us to distin-

guish among the mechanisms that could lead to nonlinear ef-
fort effects. Though unfortunate, it can be expected with
simple models whose small set of predictor variables limit
the number of estimable parameters. In such cases, a parame-
ter may lump the influence of a variety of mechanistic factors
into a single value. This is also true in more complex models
of individual choice, such as the sorting model developed by
Zhang and Smith (2011) in which a single choice-specific
constant incorporated all aspects of an area that could influ-
ence its attractiveness. In two of our three area predictions,
the differences between the CPRc and CPRu models were
slight, suggesting that there is only weak evidence for unique
nonlinear effects between the areas. This is not surprising,
because vessels could be expected to interact similarly to
crowding in many areas. However, the frequency and inten-
sity of these crowding encounters could differ among areas
with spatial differences in the size and arrangement of fishing
opportunities (Branch et al. 2005; Rijnsdorp et al. 2011).
Thus, we expect that the best model will vary among differ-
ent fisheries and area definitions. It could be argued that at
least for the North–West and West–East predictions, the
CPRc, with common nonlinear effort effects between areas,
should be selected for parsimony. Model averaging (Ander-
son 2008) could also be employed, using both the CPRc and
CPRu to allow predictions to incorporate our uncertainty in
the correct model. We chose to retain the simple minimum
AICc criteria because our goal was model comparison, but
other criteria should be considered when specific predictions
are the objective.
The CPRu, with unique nonlinear effort effects and signifi-

cant productivity ratio differences, was identified as the best
model for most area predictions. Furthermore, it illustrated
the effectiveness of our models in detecting differences in ef-
fort distribution patterns among areas. Unlike the North–East
and North–West models, there was little evidence for regular
differences in the underlying productivity ratio parameter in
the West–East models. This is consistent with the location of
each of these areas, which are both distant from shore and
similarly exposed. These areas are more likely to be similar

to each other than with the North area that is closer to port.
Unfortunately, as a consequence of the nonlinear terms (b
values), the a values are not simply additive among areas.
Such additively would be expected if the CCR model was
optimal.
The generalized nonlinear regression approach allows the

explicit treatment of correlation structures generated by catch
and effort time series. It is likely that current effort distribu-
tions influence future effort distributions because of informa-
tion exchange within fishing fleets (Allen and McGlade
1986; Gillis 2003; Branch et al. 2006). In addition, the act
of aggregating daily data into weekly time periods is likely
to generate temporal correlation structures that can bias pa-
rameter estimates (Granger and Morris 1976). This bias was
avoided by selecting AR or ARMA processes that eliminated
significant autocorrelation from the residuals. Third-order AR
processes often were found to be effective, suggesting that
the “inertia” in the fishery due to exploration, discovery, and
information exchange could be weeks in duration. The occa-
sionally preferred ARMA model is likely the result of fitting
aggregated time series data aggregation where AR processes
may be more effectively modeled using ARMA (Granger and
Morris 1976). Generally, the patterns in the residuals suggest
that lags in information dynamics play a role in the effort dis-
tribution. However, some of the autocorrelation may be due
to the aggregation of data in our analysis.
For simplicity, we present only three of the possible area

combinations, focusing on the prediction of effort in the
northern area and adding the prediction of western effort
from eastern effort for completeness. Ideally, our method
would prefer to simultaneously predict the effort distribution
among all areas, but this would involve employing more
complex model formulations and fitting methods that could
account for spatially heterogeneous autocorrelation structures.
Our present application of generalized nonlinear least squares
is tractable and readily available. In practice, it will result in
multiple predictive relationships for each area, which could
easily be compared to check consistency and combined into
a single value, possibly by a weighted average. At the explor-
atory stage, it would be simple to quickly estimate the CPRu
models and examine the CIs of their parameters. However,
final model selection should be based upon AICc values sim-
ilar to the procedure followed here.
Generalized nonlinear regressions can be expected to share

similar issues to more traditional Model I regression (Quinn
and Keough 2002) when examining the estimated parameters.
Maximum likelihood estimation in this method is performed
by assigning all variability to the predicted values and assum-
ing that the predictors are observed without error (“error in
variables”; see Hilborn and Walters 1992 for discussion in a
fisheries context). This is unlikely to be true in our commer-
cial catch and effort data, especially when the choice of pre-
dictor and predicted effort is arbitrary. This treatment is
appropriate when the goal is simply prediction, but caution
must be exercised when interpreting the values of the param-
eter estimates of specific predictor variables.
Finally, it should be noted that costs are represented ab-

stractly by isodar parameters. Costs that vary with the effort
expended in an area are readily captured by our models.
However, costs that are fixed for a trip, such as travel to and
from a fishing ground, are not easily related to our isodar pa-
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rameters. Such costs could be explicitly incorporated if they
were known by adding them to the cost term prior to fitting
the isodar, but this data is not readily available in most com-
mercial fisheries data sets. These costs could also be esti-
mated with additional model parameters, but this would also
require additional predictor variables. Travel costs and other
fixed costs are not directly related to nominal effort measured
as hours fished, but to the number of trips aggregated in the
analysis. There will be a difference in aggregated travel costs
between a single 100 h trip and ten trips of 10 h each. To
accurately represent these costs, our predictors would have to
include both the number of vessels in an area as well as the
fishing effort expended. This more complex model was be-
yond the scope of our current isodar approach, which at-
tempts to improve the predictive relationships possible with
the fishery data used in the typical calculations of CPUE.
Furthermore, if the aggregated fixed costs scale closely with
total fleet effort, they can be statistically absorbed into the
existing parameters of our models. The CPRu model predict-
ing effort between the most distant areas (North predicted
from East) showed the closest relationship between predicted
and observed values among the areas examined. This sug-
gests that travel and similar costs did not consistently influ-
ence effort distributions or that they were effectively
represented within the parameters already present. The suc-
cess of our simple model, with parameters that aggregate the
potential effects of different costs, is consistent with the prin-
ciple that simpler models can often outperform more complex
models, even when the more complex model more accurately
reflects the underlying reality (Ludwig and Walters 1985;
Adkison 2009).
Though independently derived, our final model bears some

similarity to Houston’s (2008) input matching model. Hous-
ton showed that the generalized matching law from psychol-
ogy can be extended to the habitat distribution of natural
foragers to generate an IFD. His equations predicted that the
ratio of habitat use between two areas would be a power
function of the ratio of resource input rates in the areas. If
this is re-expressed in isodar form, predicting the number at
one site as a function of the number at the other will cancel
the power terms for each number, as they did in our CPRc
model. Like the CPRc model, this results in a slope of 1 on
a logarithmic scale. Thus, the relationship between numbers,
under a static resource distribution, is expected to be linear
when foraging effort follows the generalized matching law.
Houston attributed the constant in this application of the
matching law to differences in habitat desirability not cap-
tured directly by resource levels, similar to the ideas of Hil-
born and Ledbetter (1979) and the role of the constant a in
our models. However, our model is based upon an expected
a posteriori distribution of catch between areas, while Hous-
ton’s model is based upon underlying resource renewal rates.
The similarities between the models are related to the similar
game theoretic perspectives (equalizing rewards) and the
prevalence of power relationships in natural phenomena
(Newman 2005) rather than an exact equality of the models.
The success in applying isodars in this example invites the

extension of their more general results to fisheries. For exam-
ple, Morris (1994) developed an isodar model from a differ-
ent “fitness” function that suggested a logarithmic
relationship between abundance in two habitats whose slope

was related to the ratio of interference in each area, similar
to our CPRu model. Also, through isodars Morris et al.
(2001) suggest that “undermatching” deviations from a sim-
ple IFD may be caused by interactions among foragers that
share benefits. Their work focused on the foraging distribu-
tions of related individuals through inclusive fitness. In the
case of a fishery, analogues to relatedness could be found in
fleet organization. Large fleets with central managers could
favour fleet rather than vessel optimization and result in be-
haviour similar to that expected from related foragers. In our
case, most vessels belonged to small companies with a few
vessels each, so the effect is unlikely to be strong. However,
the effects of group optimization on effort distributions
would be stronger in large fleets controlled by a single com-
pany or in large socialist fleets such as those of Cuba and the
former Soviet Union (Gillis and Showell 2002). Vessels that
form informal groups to share information or improve safety
at sea may result in similar “inclusive” benefits and distribu-
tional biases. Morris et al. (2001) also suggested that broader
social and economic patterns may be influenced by the con-
trast between group and individual maximization goals. Spe-
cifically, their analysis suggested that the distribution of
group optimizers will undermatch resource distributions and
provide higher total benefits, but this distribution will be un-
stable when individuals outside of the group are free to ex-
ploit the better opportunities. In this context, the parameters
of our models provide a simple means of quantitatively ex-
amining the impact of changes in fleet organization on the
distributional patterns of fishing activities when only catch
and effort data are available across the time period being ex-
amined.
The simplicity of our aggregate model stands in stark con-

trast with current economic models that predict specific deci-
sions by individuals from a variety of covariates related to
characteristics of the fishing grounds and fish harvesters
(Haynie and Layton 2010; Zhang and Smith 2011; Hicks et
al. 2012). These methods have developed from the analysis
of discrete choices in a random utility model framework
(Train 2009). They have quantified individual variation in
fish harvester responses (Zhang and Smith 2011) and conges-
tion effects homologous to interference effects in the ecolog-
ical literature (Hicks et al. 2012). The insights provided by
these models are obvious, but the tradeoff between model
complexity and the quality of predictions remains. This was
observed directly by Smith (2002) when he found that the
forecast performance of an aggregate model of spatial effort
allocation was often better than that of a discrete choice
model. We feel that fisheries study and practice will benefit
from the continued development of both complex models of
individual choice and aggregate models that can be quickly
and simply related to fisheries data.
The utility of our models to fisheries science and manage-

ment is similar to that of the IFD from which it was devel-
oped. In the case of a simple catch rate equalizing IFD, the
distribution of local abundances will be more closely related
to effort distributions and poorly reflected by catch rates (Gil-
lis and Peterman 1998). Our empirical models incorporate
new parameters related to unknown costs, but effort move-
ments in responses to area productivity will still make CPUE
a poor indicator of local abundance. Though explicit costs
are not estimated in our models, the resulting patterns are
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simply quantified. The parameters of our models could be
used as indicators to detect variation in fleet dynamics that
may be associated with changes in management actions, en-
vironmental conditions, or exploitation. Once a change in ef-
fort dynamics is identified, more detailed and costly data
collection can be more easily justified. Our model could also
be used to represent effort dynamics within other simulation
models examining aggregate patterns in catch and effort rela-
tionships, especially when detailed cost data is not available
but historical series of catch and effort can be obtained. Our
final model was the best fit to the data set that we have ex-
amined, but this may not be true for other data sets. How-
ever, our methodology of model comparisons is more
general. Other fisheries may display common nonlinear effort
effects between areas or fail to show significant deviations
from a simple IFD. To distinguish such cases, a systematic
series of model comparisons should reveal the most parsimo-
nious model to summarize the observations. Alternatively,
examining the coefficients of the full CPRu model could pro-
vide a rapid indication of optimal model complexity. This lat-
ter approach can be useful during initial explorations of the
data, but we prefer formal model selection procedures to
quantify the evidence for final model selection.
The observation that the proportional distribution of fish-

ing effort among alternative fishing areas is often close to
that expected with the IFD has provided useful insights into
the spatial dynamics of fish exploitation. By recasting the
catch and effort based IFD as an isodar model that explicitly
predicts effort, we have been able to refine the model to in-
corporate parameters that can capture the effects of area-
specific costs that vary with effort (including risk) and non-
linear effort effects (such as interference) among vessels. The
use of generalized nonlinear least squares to estimate the pa-
rameters of the isodars has allowed us to develop more com-
plex models and reduce biases in parameter estimates due to
autocorrelation in the data. This novel approach to fisheries
analysis provides a readily accessible tool for those who
wish to examine the dynamics of aggregated fishing effort
data from the perspective of frequency-dependent n-person
games. The theoretical foundation is provided by the evolu-
tionary principles underlying the IFD (Maynard Smith 1982,
p. 90) and the development of isodar theory (Morris 1988) .
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