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§7.8 Electrostatic Potential

§7.8.1 Electrostatic Potential Without Sources

In Section 3.9, we associated an analytic complex potential F (z) = V (x, y) +
W (x, y)i with two-dimensional electrostatic fields V (x, y) that were the result of
three-dimensional problems in which potential was identical in every plane paral-
lel to the xy-plane. The components of the electric field intensity E are the real
and imaginary parts of −F ′(z). Curves (cylinders) in the one-parameter family
V (x, y) = C are equipotentials, and curves W (x, y) = C are lines of force.

In domains D which are free of charge, the potential satisfies Laplace’s equation

∂2V

∂x2
+
∂2V

∂y2
= 0. (7.42a)

What completes the characterization of V (x, y) is specification of a boundary con-
dition on the boundary β(D) of D, usually a Dirichlet or Neumann condition (see
equations 7.22a and 7.23a).

Suppose for the moment that D is a bounded domain as shown in Figure 7.65,
and it is required to solve 7.42a subject to a Dirichlet condition on β(D),

V (x, y) = h(x, y), (x, y) on β(D), (7.42b)

where h(x, y) is a given function.
According to Corollary 3 to Theorem 4.24
in Section 4.8, the solution of this problem
is unique; there cannot be two different
solutions. Furthermore, Theorem 4.24
indicates that V (x, y) cannot have a relative
maximum or minimum inside D; maximum
and minimum potentials must occur on β(D).

y

x

D

D( )b

Figure 7.65

When D is a complicated domain, it may be possible to use a conformal mapping
to map D onto a simpler domain, solve the simple problem, and then invert the
transformation to obtain the solution to the original problem. We illustrate in the
following examples.

Example 7.31 A cylindrical conductor of infinite length and radius R is centred around a line
through the origin of the xy-plane and perpendicular to the plane. One half is held
at potential V1, and the other half at V2, the parts being separated by thin pieces
of insulation. Find the potential interior to the cylinder. Describe the equipotential
surfaces and lines of force interior to the cylinder.
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Solution Since potential in all planes parallel to the xy-plane is the same, we
rephrase the problem as finding the potential inside the circle x2 + y2 < R2, given
that its values on the upper and lower halves are V2 and V1, respectively (Figure
7.66). We begin by mapping the circle to the half-plane Imw > 0 with a bilinear
transformation in such a way that the upper semicircle is mapped to the positive
u = Rew axis and the lower semicircle is mapped to the negative u-axis. If we
choose to map z = R to w = 0, then z = −R maps to points infinitely far out
the real u-axis. Since z = −R is the pole of the mapping, the transformation takes
the form w = a(z − R)/(z + R). If we arbitrarily demand that z = Ri map to
w = 1, then 1 = a(Ri − R)/(Ri+ R), and this requires that a = −i. The bilinear
transformation is therefore

w =
i(R− z)
R+ z

.

According to equation 4.38, the solution ψ(u, v) of Laplace’s equation in the domain
Imw > 0 subject to the boundary conditions in Figure 7.66 is

ψ(u, v) =
V1 + V2

2
+

1
π

(V1 − V2)Tan−1
(
−u
v

)

=
V1 + V2

2
+

1
π

(V2 − V1)Tan−1
(u
v

)
.

If we set w = u+ vi and z = x+ yi in the bilinear transformation,

u+ vi =
i(R− x− yi)
R + x+ yi

=
i[(R − x) − yi]
(R+ x) + yi

(R+ x) − yi

(R+ x) − yi
=

2yR+ (R2 − x2 − y2)i
(R+ x)2 + y2

.

Thus,

u =
2yR

(R+ x)2 + y2
, v =

R2 − x2 − y2

(R+ x)2 + y2
,

and the electrostatic potential is

V =
V1 + V2

2
+

1
π

(V2 − V1)Tan−1

(
2Ry

R2 − x2 − y2

)
.

Equipotential surfaces are defined implicitly by

C =
V1 + V2

2
+
V2 − V1

π
Tan−1

(
2Ry

R2 − x2 − y2

)
=⇒ Tan−1

(
2Ry

R2 − x2 − y2

)
= k,

where C is a constant and k = π(2C−V1−V2)/(2V2−2V1). When we take tangents
on both sides of the latter equation,
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2Ry
R2 − x2 − y2

= tank =⇒ R2 − x2 − y2 = 2Ry cotk.

This can be rearranged into the form

x2 + (y +R cotk)2 = R2 +R2 cot2 k = R2 csc2 k.

These are circular arcs through (±R, 0) with
centres on the y-axis ((Figure 7.67). If we set
K = cotk, then equipotentials are given by
x2 + y2 + 2KRy = R2. Lines of force are
orthogonal trajectories of these curves.
They can be derived by finding harmonic
conjugates W (x, y) of V (x, y), but this turns
out to be a formidable task. Instead, we use
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differential equations to find the orthogonal Figure 7.67
trajectories of x2 + y2 + 2KRy = R2. If we

differentiate this equation with respect to x, we obtain 2x+ 2y
dy

dx
+ 2KR

dy

dx
= 0.

Thus,

dy

dx
=

−x
y +KR

=
−x

y + (R2 − x2 − y2)/(2y)
=

−2xy
R2 − x2 + y2

.

The differential equation for orthogonal trajectories is

dy

dx
=
R2 − x2 + y2

2xy
=⇒ dy

dx
− y

2x
=
R2 − x2

2xy
.

We substitute z = y2 and dz/dx = 2y dy/dx into this Bernoulli equation,

1
2y

dz

dx
− y

2x
=
R2 − x2

2xy
=⇒ dz

dx
− z

x
=
R2 − x2

x
.

An integrating factor for this linear first-order differential equation is
e
∫

(−1/x) dx = 1/x. When the differential equation is multiplied by 1/x,

1
x

dz

dx
− z

x2
=
R2 − x2

x2
=⇒ d

dx

( z
x

)
=
R2 − x2

x2
.

Integration gives

z

x
= −R

2

x
− x+ 2C =⇒ y2 = −R2 − x2 + 2Cx,

where C is a constant. Lines of force are therefore (x−C)2 + y2 = C2 −R2. These
are circular arcs with centres on the x-axis.•

Example 7.32 Find potential in the semi-infinite strip −1 < x < 1, y > 0 if potential on the
horizontal side is 0 and that on the vertical sides is V0 > 0. Identify and plot
equipotentials.
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Solution In Examples 7.13 and 7.22 we derived the mapping w = sin [πz/(2)]
that maps the strip to the half-plane Imw > 0 in such a way that z = ±1 are
mapped to w = ±1. Formula 4.38 gives the solution ψ(u, v) of Laplace’s equation
in Imw > 0 subject to the piecewise constant boundary condition along Imw = 0,

ψ(u, v) =
1
2
(V0 + V0) +

1
π

[
V0 Tan−1

(
−1 − u

v

)
− V0 Tan−1

(
1 − u

v

)]

= V0 −
V0

π

[
Tan−1

(
1 + u

v

)
+ Tan−1

(
1 − u

v

)]
.

Since w = u+ vi = sin
πz

2
= sin

πx

2
cosh

πy

2
+ cos

πx

2
sinh

πy

2
i, it follows that

V (x, y) = ψ[u(x, y), v(x, y)]

= V0 −
V0

π


Tan−1




1 + sin
πx

2
cosh

πy

2
cos

πx

2
sinh

πy

2


 + Tan−1




1 − sin
πx

2
cosh

πy

2
cos

πx

2
sinh

πy

2





 .

We can simplify this solution by bringing the inverse tangents together. If we take
tangents of both sides of

π

V0
(V0 − ψ) = Tan−1

(
1 + u

v

)
+ Tan−1

(
1 − u

v

)
,

we obtain

tan
[
π

V0
(V0 − ψ)

]
=

1 + u

v
+

1 − u

v

1−
(

1 + u

v

) (
1 − u

v

) =
2v

u2 + v2 − 1
.

Since 0 < ψ < V0, it follows that 0 < π(V0 − ψ)/V0 < π. With tan−1 denoting
values of the inverse tangent function between 0 and π, the solution can be written
in the form
π

V0
(V0 − ψ) = tan−1

(
2v

u2 + v2 − 1

)
=⇒ ψ(u, v) = V0 −

V0

π
tan−1

(
2v

u2 + v2 − 1

)
.

Since u = sin
πx

2
cosh

πy

2
and v = cos

πx

2
sinh

πy

2
,

V (x, y) = V0 −
V0

π
tan−1




2 cos
πx

2
sinh

πy

2
sin2 πx

2
cosh2 πy

2
+ cos2

πx

2
sinh2 πy

2
− 1



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= V0 −
V0

π
tan−1




2 cos
πx

2
sinh

πy

2
sin2 πx

2
+ sinh2 πy

2
− 1




= V0 −
V0

π
tan−1




2 cos
πx

2
sinh

πy

2
sinh2 πy

2
− cos2

πx

2


 .

Equipotentials are defined implicitly by

C = V0 −
V0

π
tan−1




2 cos
πx

2
sinh

πy

2
sinh2 πy

2
− cos2

πx

2


 , or, tan

[
π(V0 − C)

V0

]
=

2 cos
πx

2
sinh

πy

2
sinh2 πy

2
− cos2

πx

2

.

They are shown in Figure 7.69.•
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Example 7.33 An infinite conducting cylinder with radius 2 has its centre 4 units away from a
plane that is parallel to the axis of the cylinder. The cylinder is held at potential V1

while the plane is at potential V0. Find potential at all points outside the cylinder
on the same side of the plane as the cylinder.

Solution Figure 7.70 shows a cross-section of the
cylinder which therefore has its axis perpendicular
to the xy-plane. The plane at potential V0 is
represented by the x-axis. To find the potential
above the x-axis and outside the circle, we use
the technique of Example 7.12 to map the region
to an annulus. Consider finding a pair of points z1
and z2 that are simultaneously inverses with respect
to the x-axis and to the circle . The inverse of z1

y

x

2
4

V V= 0

V=V1V=V1

with respect to the x-axis is its conjugate z1. Figure 7.70
According to equation 7.11, z1 and z1 are inverses
with respect to the circle if

z1 = 4i+
4

z1 − (−4i)
.

Solutions of this equation are z1 = ±2
√

3i. The bilinear transformation

w=f(z)=
z − 2

√
3i

z + 2
√

3i
maps the region outside the cylinder to an annulus (Figure

7.71). The radius of the image of the circle |z− 4i| = 2 is the modulus of the image
of any point on the circle; in particular,
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|f(2i)| =

∣∣∣∣∣
2i− 2

√
3i

2i+ 2
√

3i

∣∣∣∣∣ = 2 −
√

3.

The radius of the image of the x-axis is the modulus of the image of any point on
the axis; in particular,

|f(0)| =

∣∣∣∣∣
−2

√
3i

2
√

3i

∣∣∣∣∣ = 1.
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Any function of the form c+d ln (u2 + v2) satisfies Laplace’s equation, and this func-
tion is constant along any circle centred at the origin. If ψ(u, v) = c+ d ln (u2 + v2)
is to be the solution of Laplace’s equation in the annulus satisfying the specified
boundary conditions, then c and d are given by the equations

V1 = c+ d ln (2 −
√

3)2, V0 = c =⇒ d =
V1 − V0

2 ln (2 −
√

3)
.

Thus,

ψ(u, v) = V0 +
V1 − V0

2 ln (2 −
√

3)
ln (u2 + v2).

To express this in terms of x and y, we could find u and v in terms of x and y. A
simpler expression is obtained if we note that u2 + v2 = |w|2, and therefore

V (x, y) = V0 +
V1 − V0

2 ln (2 −
√

3)
ln |w|2 = V0 +

V1 − V0

2 ln (2 −
√

3)
ln

∣∣∣∣∣
z − 2

√
3i

z + 2
√

3i

∣∣∣∣∣

2

= V0 +
V1 − V0

2 ln (2 −
√

3)
ln

[
x2 + (y − 2

√
3)2

x2 + (y + 2
√

3)2

]
.•

Example 7.34 In Figure 7.72a, the horizontal lines y = ±d for x < 0 represent the cross-section of
a semi-infinite parallel plate capacitor. If potentials on top and bottom plates are
V0 and −V0, respectively, find equipotentials and lines of force.
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Figure 7.72a Figure 7.72b



360 SECTION 7.8

Solution Symmetry indicates that potential along the x-axis is zero for x < 0
and x > 0, and that potential below the x-axis is the negative of that above the
x-axis. We therefore solve the problem in Figure 7.72b where potential is V0 along
the half-line y = d (x < 0) and is 0 along y = 0 (−∞ < x < ∞). We begin by
mapping the region onto the upper half-plane Im w̃ > 0 with a Schwarz-Christoffel
transformation. We regard the region in the z-plane as a degenerate triangle with
vertices z1, z2, and z3 in Figure 7.73.
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Figure 7.73

Angles α and β at z2 and z3 must be made to approach 2π and 0 respectively.
Difficulty with the angle at z1 is eliminated by choosing ũ1, the pre-image of z1 as
the point at infinity, in which case the angle does not enter the Schwarz-Christoffel
transformation. If we choose ũ2 = −1 and ũ3 = 0, then taking limits of

dz

dw̃
= A(w̃ + 1)α/π−1w̃β/π−1

as α→ 2π and β → 0 gives

dz

dw̃
= A

(
w̃ + 1
w̃

)
= A

(
1 +

1
w̃

)
.

Integration gives

z = A(w̃ + logφ w̃) + B.

If we choose φ = −π/2, then for ũ2 = −1 to map to z2 = di, A and B must satisfy

di = A[−1 + log−π/2 (−1)] +B = A(−1 + πi) +B.

This is satisfied if we choose A = B = d/π, in which case

z =
d

π
(1 + w̃ + log−π/2 w̃).

It is straightforward to check that this transformation maps the positive ũ-axis to
the x-axis, and maps both parts −∞ < ũ < −1 and −1 < ũ < 0 of the negative
ũ-axis to the half-line y = d, x < 0.

We could now use equation 4.38 to find potential in the half-plane Im w̃ > 0 with
value V0 on the negative ũ-axis and value 0 on the positive ũ-axis. Unfortunately, it
would not yield a convenient representation for equipotentials and/or lines of force.
Instead, we map Im w̃ > 0 to the infinite strip in Figure 7.74 in such a way that the
negative ũ-axis is mapped to the line V = V0i and the positive ũ-axis is mapped to
the u-axis. A mapping that will do this is w = (V0/π) log−π/2 w̃.
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Since w̃ = eπw/V0 , the transformation

z =
d

π

[
1 + eπw/V0 + log−π/2 (eπw/V0)

]
=
d

π

(
1 + eπw/V0 +

πw

V0

)

therefore maps the strip in Figure 7.74 to the half-space, with u-axis mapped to
x-axis, and line V0i mapped to half-line y = d, x < 0.

The solution of Laplace’s equation in the strip is ψ(u, v) = v. To find potential
V (x, y), we would set

x+ yi = z =
d

π

[
1 + eπ(u+vi)/V0 +

π(u+ vi)
V0

]
,

and solve for v in terms of x and y, an impossibility. We can, however, find equations
for equipotential curves and lines of force. If we take take real and imaginary parts
of the above equation,

x =
d

π

[
1 + eπu/V0 cos

πv

V0
+
πu

V0

]
, and y =

d

π

[
eπu/V0 sin

πv

V0
+
πv

V0

]
.

Equipotential curves for y ≥ 0 are therefore defined parametrically by

x =
d

π

[
1 + eπu/V0 cos

πV

V0
+
πu

V0

]
, y =

d

π

[
eπu/V0 sin

πV

V0
+
πV

V0

]
,

for fixed V ≥ 0 and u as parameter.
Orthogonal trajectories in the strip are u = U = constant, and therefore lines

of force in the xy-plane are given parametrically by

x =
d

π

[
1 + eπU/V0 cos

πv

V0
+
πU

V0

]
, y =

d

π

[
eπU/V0 sin

πv

V0
+
πv

V0

]
,

for fixed U and v as parameter. Both sets of curves are shown in Figure 7.75.•
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EXERCISES 7.8.1

For simplicity in formulation, exercises will be posed in the xy-plane. They are,
however, the result of three-dimensional problems for which potential is the same
in every plane parallel to the xy-plane.

1. Find potential interior to the wedge 0 ≤ θ ≤ α < 2π if potential along θ = 0, r > 0 is V0, and
along θ = α, r > 0, potential is Vα.

2. Find potential in the semicircle x2 + y2 < R2, y > 0 when V = V1 on y = 0 and V = V0 on
x2 + y2 = R2. Hint: Use the mapping w = i(R− z)/(R+ z).

3. Find potential in the circle x2 + y2 < R2 when potential on that part of the circle in the
first quadrant is V0 and potential on the remainder of the circle is zero. Hint: Use a bilinear
transformation that maps the points z = Ri, z = −R, and z = R to w = 0, w = 1, and w = ∞.
What is the potential at the centre of the circle?

4. Find potential in the half-plane y > 0 outside the circle x2 + y2 = R2 given that potential
on the semicircle is V0 and potential on the x-axis for |x| > R is zero. Hint: Use the bilinear
transformation w = (z − R)/(R+ z) and Exercise 1.

5. Find potential in the half-plane y > 0 outside the circle x2 + y2 = R2 given that potential
on the semicircle is V1 and potential on the x-axis for |x| > R is V0. Hint: Use the bilinear
transformation w = (z − R)/(R+ z) and Exercise 1.

6. Find potential in the semi-infinite strip −a < x < a, y > 0 if potential on the horizontal side is
V0 and that on the vertical sides is V1.

7. Find potential in the semi-infinite strip −a < y < a, x > 0 if potential on the horizontal sides
is V0 and that on the vertical side is V1. Hint: Use the transformation w = i sinh [πz/(2a)].

8. Find potential in the domain bounded by that part of x2 + y2 = a2 above the x-axis and that
part of x2 + (y − a)2 = 2a2 below the x-axis. Potential on x2 + y2 = a2 is V0, and potential on
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x2 + (y − a)2 = 2a2 is V1. Hint: First map the domain to the sector π/2 < argw∗ < 5π/4 by
w∗ = (z − a)/(z + a), and then map the sector to an infinite strip with w = log−π/2 w∗ − πi/2.

9. Find potential at points in the half-plane y > 0 that are outside the circle x2 + (y − a)2 = a2

given that potential on the circle is a constant V0 and potential on y = 0 is a constant V1. Hint:
Try w = −2a/z. Find equipotential curves.

10. A circle with radius R has its centre a > R units away from a line. The circle is held at potential
V1 while the line is at potential V0. Find potential at all points outside the circle on the same
side of the line as the circle. Hint: Use the bilinear transformation in Exercise 28 of Section 7.2
to map the problem to that in an annulus.

11. Two conducting circles have equations x2 + (y − 2)2 = 4 and x2 + y2 = 25. The inner circle is
held at potential V0, and the outer one is held at potential V1. Find the potential between the
circles. Hint: Use a bilinear transformation like that in Exercise 29 of Section 7.2 to map the
region to an annulus.

12. Two arcs are parts of the circles
x2 + (y −R)2 = R2 and (x− R)2 + y2 = R2

(figure to the right). The lower arc is held
at potential V0, and the upper one is held
at potential V1. Find the potential
between the arcs. Hint: First, use a bilinear
transformation with z = R(1 + i) as pole
and z = 0 as zero. Then map the image to
the first quadrant and use Exercise 19 of
Section 7.5.

y

xR

R

V V R,R

x y R R

x yR R

= 1
)(

2

2

2+( - )2= 2

2( - ) 2= 2

V V= 0

+

13. Two circles (x − a)2 + y2 = a2 and (x − b)2 + y2 = b2, where b > a, are held at constant
potentials V0 and V1 > V0, respectively. The point of contact of the circles is separated by
perfect insullation.
(a) Find potential between the circles.
(b) Find and draw equipotential curves.

14. The x-axis to the left of x = −1 is held at constant potential V = V0, and the x-axis to the
right of x = 1 is held at potential V = 0. Find the resulting potential in the xy-plane. Hint:
Consider the mapping w = Cos−1z, and see Exercises 43 and 38 in Section 3.7. Find and draw
equipotential curves.

15. Use the transformation of Exercise 33 in Section 7.2 to show that the potential in the region
exterior to the two circles in the figure below can be expressed in the form

V (x, y) = Va +
Vb − Va

ln ρ
ln

∣∣∣∣
[Rρ(1 − ρ) + 2ρ(a− R)]z + [Rρ(1 − ρ)(a−R) − 2ρ(a2 − R2)]
[R(1 − ρ) − 2ρ(a−R)]z +R(1 − ρ)(a−R) + 2ρ(a2 − R2)]

∣∣∣∣.
y

x

V Va= V Vb=

-a a

R R
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§7.8.2 Electrostatic Potential With Sources

In the previous subsection, electrostatic potential in a domain D was the result of
surfaces bounding D being held at constant potentials. In this subsection we intro-
duce line charges as additional factors affecting potential. To begin with, consider
a line of charge q coulombs per metre perpendicular to the xy-plane at the origin
(Figure 7.76). We use Coulomb’s law to find the potential in space due to the line
of charge rather than working with Laplace’s equation.

The electric field intensity E due to
this line of charge is always parallel to
the xy-plane, and is therefore a function
of x and y only. By definition, E is the
force on a unit positive charge placed
in the field. With Coulomb’s law, we
obtain for the magnitude of E at (x, y),

x y

l

dl

s

r
x,y

f

( )

Figure 7.76

|E| = 2
∫ ∞

0

cosφ
q(1)

4πε0s2
dl =

rq

2πε0

∫ ∞

0

1
(r2 + l2)3/2

dl.

Since l = r tanφ, we change variables of integration,

|E| =
rq

2πε0

∫ π/2

0

r sec2 φ

r3 sec3 φ
dφ =

q

2πε0r

∫ π/2

0

cosφdφ =
q

2πε0r
=

q

2πε0
√
x2 + y2

.

Since E is directed radially away from the line of charge,

E =
q

2πε0
√
x2 + y2

x̂i + yĵ√
x2 + y2

=
q

2πε0(x2 + y2)
(x̂i + yĵ).

Because the electric field is the negative of the gradient of the potential (E = −∇V ,
see equation 3.61), it follows that

∂V

∂x
= − qx

2πε0(x2 + y2)
,

∂V

∂y
= − qy

2πε0(x2 + y2)
.

These give

V (x, y) =
−q

4πε0
ln (x2 + y2) +D, (7.43)

where D is a real constant, as the real potential due to a line of charge q coulombs
per metre at the origin. We know that the function ln

√
x2 + y2 is the real part of

the complex function logφ z. Hence, the complex potential function associated with
a line charge q coulombs per metre at the origin is

F (z) =
−q

2πε0
logφ z + (D +Ei). (7.44)

When the line of charge is at the point (x0, y0), the real potential is

V (x, y) =
−q

4πε0
ln [(x− x0)2 + (y − y0)2] +D, (7.45)
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and the complex electrostatic potential is

F (z) =
−q

2πε0
logφ (z − z0) + (D +Ei), (7.46)

where z0 = x0 + y0i. In the following examples, we introduce multiple line charges
into space and/or the presence of bounding surfaces.

Example 7.35 A line charge has q coulombs per metre. If potential at a distance R from the charge
is VR, find potential at a distance r from the charge.

Solution According to equation 7.45, potential at a point (x, y) due to a line
charge at (x0, y0) is

V (x, y) =
−q

4πε0
ln [(x− x0)2 + (y − y0)2] +D.

Since potential on the circle (x− x0)2 + (y − y0)2 = R2 is VR,

VR =
−q

4πε0
ln (R2) +D =⇒ D = VR +

k

2πε0
lnR.

Thus,

V (x, y) =
−q

4πε0
ln

[
(x− x0)2 + (y − y0)2

R2

]
+ VR.

If V (r) represents potential at a distance r from the source, then

V (r) = VR − q

2πε0
ln (r/R).•

It is important to realize that the development of equations 7.43–7.46 and the
discussion in Example 7.35 took place in all space. There were no boundaries to
consider that might affect potential; potential was due only to a line of charge.
In the presence of boundaries at designated potentials, equations 7.43–7.46 might,
or might not, be a correct description of potential. For instance, suppose that in
Example 7.35, a circular cylinder of radius R at potential VR has the line charge
along its axis. Because the cylinder is coincident with an equipotential surface for
the line charge, potential inside the cylinder is exactly as in the example. In other
words, the presence of this particular bounding surface does not affect the potential
function, only its domain of definition. On the other hand, if the line charge is
outside the cylinder, finding potential outside the cylinder is more difficult (see
Exercise 3).

In preparation for the next example, we note that the real (or complex) poten-
tial function due to multiple line charges (in space) is simply the sum of their real
(or, complex) potential functions.

Example 7.36 Find the real electrostatic potential due to a line of charge q coulombs per metre
perpendicular to the xy-plane at (x0, y0), and a line of charge −q coulombs per
metre perpendicular to the xy-plane at (x1, y1). Find equipotentials and lines of
force when y0 = y1 = 0 and x0 = −x1 = a > 0.

Solution If we add potentials due to the line charges, and set z0 = x0 + y0i and
z1 = x1 + y1i, equation 7.46 gives the complex electrostatic potential as
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F (z) =
q

2πε0
[logψ (z − z1) − logφ (z − z0)] + (D + Ei).

The real electrostatic potential is

V (x, y) = Re[F (z)] =
q

2πε0
[ln

√
(x− x1)2 + (y − y1)2 − ln

√
(x− x0)2 + (y − y0)2] +D

=
q

4πε0
ln

[
(x− x1)2 + (y − y1)2

(x− x0)2 + (y − y0)2

]
+D.

Equipotentials are defined by

q

4πε0
ln

[
(x− x1)2 + (y − y1)2

(x− x0)2 + (y − y0)2

]
= C = constant,

and this equation can be expressed in the form

(x− x1)2 + (y − y1)2

(x− x0)2 + (y − y0)2
= A, A = e4πε0C/q.

For y0 = y1 = 0 and x0 = −x1 = a, this equation reduces to

(x+ a)2 + y2

(x− a)2 + y2
= A.

When A = 1, the equipotential becomes the line x = 0. When A > 1, the equipo-
tential can be written in the form

[
x− a

(
A+ 1
A− 1

)]2

+ y2 =

[(
A+ 1
A− 1

)2

− 1

]
a2,

a circle with centre on the positive x-axis enclosing charge q at (a, 0). When A < 1,
the equipotential reduces to

[
x+ a

(
1 +A

1 −A

)]2

+ y2 =

[(
1 +A

1 −A

)2

− 1

]
a2,

a circle with centre on the negative x-axis enclosing charge −q at (−a, 0). We have
shown some of these equipotentials in Figure 7.77.
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=
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=

=
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Figure 7.77

Lines of force are the orthogonal trajectories of these two families of circles. They
are defined by Im [F (z)] = constant; that is

q

2πε0
[argψ(z − z1) − argφ(z − z0)] = constant.

This equation can be expressed in the form
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tan−1

(
y − y1
x− x1

)
− tan−1

(
y − y0
x− x0

)
= constant = B.

For y0 = y1 = 0 and x0 = −x1 = a,

tan−1

(
y

x+ a

)
− tan−1

(
y

x− a

)
= B.

Taking tangents of both sides of this equation gives
y

x+ a
− y

x− a

1 +
y2

x2 − a2

= tanB,

and this simplifies to D(x2 + y2 − a2) = −2ay, where D = tanB. When D = 0, we
obtain y = 0. When D 6= 0, we rewrite the equation in the form

x2 +
(
y +

a

D

)2

=
a2

D2
(D2 + 1).

These are circles passing through q and −q (Figure 7.78).•

y

x
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-a

q

a

D D D

D D D

= = =

= = =1/2 1 2

-1/2 -1 -2

Figure 7.78

The following example leads to a technique that is often useful in handling line
charges in the presence of conducting boundaries.

Example 7.37 A line charge of q coulombs per metre is located at the point (x0, y0) and is perpen-
dicular to the xy-plane. A plane containing the x-axis, and perpendicular to the
xy-plane, is held at potential V0. Find potential in the half space y > 0. Find and
draw equipotentials.

Solution We model the three-dimensional situation with the x-axis representing
the plane and a point source at (x0, y0) (Figure 7.79). To make use of complex
potential function 7.44 for potential due to a source in the absence of boundaries,
we map the half-plane y > 0 to the interior of the unit circle |w| = 1 in such
a way that the source is mapped to the origin and the x-axis is mapped to the
unit circle. Although the circle |w| = 1 is a boundary for the region, the fact
that it is at constant potential makes it compatible with a source at the origin
with no boundary where equipotentials are circles centred at the origin. A bilinear
transformation will perform the mapping. According to Exercise 24 in Section 7.2,
all bilinear transformations that map the half-plane y > 0 to the unit circle and
take a point z0 to w = 0 are of the form w = eλi(z − z0)/(z − z0), for some real
constant λ. If we arbitrarily set λ = 0 and choose z0 = x0 + y0i, then



368 SECTION 7.8

w =
z − z0
z − z0

.

y

x

v

u

V= 0

1

1

w z z=( - )/( - )

0 0( )x y,

z

V

0 z0

Figure 7.79

The complex potential function in the w-plane due to the source at the origin must
be of the form

G(w) = − q

2πε0
logφ w + (D +Ei),

and therefore the complex potential function in the z-plane is

F (z) = − q

2πε0
logφ

(
z − z0
z − z0

)
+ (D + Ei).

The real potential function is

V (x, y) = Re [F (z)] =
q

2πε0
ln

∣∣∣∣
z − z0
z − z0

∣∣∣∣ +D.

Since potential along y = 0 is V0, we must have

V0 =
q

2πε0
ln

∣∣∣∣
x− x0 + y0i

x− x0 − y0i

∣∣∣∣ +D = D.

Thus,

V (x, y) = V0 +
q

4πε0
ln

[
(x− x0)2 + (y + y0)2

(x− x0)2 + (y − y0)2

]
.

Equipotential curves are defined implicitly by

C = V0 +
q

4πε0
ln

[
(x− x0)2 + (y + y0)2

(x− x0)2 + (y − y0)2

]
.

If we define k = e2πε0(C−V0)/q, it is a straightforward exercise in algebra to show
that this equation can be rewritten in the form

(x− x0)2 + (y − y0 cothk)2 = y2
0csch

2k.

These are circles with centres at (x0, y0cothk) some of which are shown in Figure
7.80.•
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y

xV= 0

( 0, 0)x y

V

Figure 7.80

It is instructive to write the complex potential function in this example in the
following form

F (z) = V0 −
q

2πε0
logφ (z − z0) +

q

2πε0
logφ (z − z0) + Ei.

It is V0 plus the sum of two complex potential functions, one due to a positive line
charge at z0 and the other due to a negative line charge at z0. The two charges result
in a potential of zero along the x-axis. This suggests an alternative technique for
solving Example 7.37, a technique called the method of images. The given problem
with a charge and a boundary with prescribed potential is replaced by a problem
with the original charge and a second charge so that the two together yield potential
zero on the boundary. To this is added the constant potential V0. In the example,
the negative charge is at the image of the positive charge in the x-axis. In some
configurations, more than one image charge may be required, or the image may be
in some other line, or even a circle (see Exercise 2 for the case of a circle). We use
a conformal mapping and the method of images in the following example.

Example 7.38 Two infinite parallel plates separated by a distance a are both at potential V0. If a
line charge of q coulombs per metre is a distance b from one of the plates, determine
the electrostatic potential between the plates. Find and plot equipotentials.

Solution We reduce the problem to two dimensions by modelling the plates as
the lines y = 0 and y = a. The line charge passes through the point (0, b) on the
y-axis (Figure 7.81).

y

xV=

v

uy=y=

V= 0 a

b
e bi/ap

w e z/a= p

b

V

0V 0V 0V

Figure 7.81

The transformation w = eπz/a maps the strip between the plates to the half-plane
Imw > 0, with the point z = b mapped to w = eπbi/a. To solve the potential
problem in the w-plane, we mometarily replace the boundary condition ψ = V0 with
ψ = 0. A charge configuration of q at w = eπbi/a and −q at the complex conjugate
point w = e−πbi/a produces zero potential on the real w-axis. Consequently, the
complex electrostatic potential in the upper-half of the w-plane when the boundary
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condition is V = 0 is

G(w) = − q

2πε0
logφ (w − eπbi/a) +

q

2πε0
logψ (w − e−πbi/a) + (D + Ei).

The complex potential when the boundary condition is V = V0 is then

G(w) = V0 −
q

2πε0
logφ (w − eπbi/a) +

q

2πε0
logψ (w − e−πbi/a) + (D +Ei).

The complex electrostatic potential between the parallel lines in the z-plane is

F (z) = V0 −
q

2πε0
logφ (eπz/a − eπbi/a) +

q

2πε0
logψ (eπz/a − e−πbi/a) + (D +Ei).

The real potential is

V (x, y) = Re [F (z)] = V0 +
q

2πε0
Re

[
logψ (eπz/a − e−πbi/a) − logφ (eπz/a − eπbi/a)

]
+D

= V0 +
q

2πε0
Re

[
logψ (eπ(x+yi)/a − e−πbi/a) − logφ (eπ(x+yi)/a − eπbi/a)

]
+D

= V0 +
q

2πε0
Re

{
logψ

[(
eπx/a cos

πy

a
− cos

πb

a

)
+

(
eπx/a sin

πy

a
+ sin

πb

a

)
i

]

− logφ

[(
eπx/a cos

πy

a
− cos

πb

a

)
+

(
eπx/a sin

πy

a
− sin

πb

a

)
i

]}
+D

= V0 +
q

2πε0

{
ln

√(
eπx/a cos

πy

a
− cos

πb

a

)2

+
(
eπx/a sin

πy

a
+ sin

πb

a

)2

− ln

√(
eπx/a cos

πy

a
− cos

πb

a

)2

+
(
eπx/a sin

πy

a
− sin

πb

a

)2
}

+D

= V0 +
q

4πε0
ln




(
eπx/a cos

πy

a
− cos

πb

a

)2

+
(
eπx/a sin

πy

a
+ sin

πb

a

)2

(
eπx/a cos

πy

a
− cos

πb

a

)2

+
(
eπx/a sin

πy

a
− sin

πb

a

)2


 +D

= V0 +
q

4πε0
ln



e2πx/a + 1 + 2eπx/a

(
sin

πy

a
sin

πb

a
− cos

πy

a
cos

πb

a

)

e2πx/a + 1 − 2eπx/a
(

cos
πy

a
cos

πb

a
+ sin

πy

a
sin

πb

a

)


 +D

= V0 +
q

4πε0
ln



e2πx/a + 1 − 2eπx/a cos

π(y + b)
a

e2πx/a + 1 − 2eπx/a cos
π(y − b)

a


 +D

= V0 +
q

4πε0
ln




cosh
πx

a
− cos

π(y + b)
a

cosh
πx

a
− cos

π(y − b)
a


 +D.

Either of the conditions that V = V0 along y = 0 or y = a leads to D = 0.
Equipotentials are defined implicitly by the equation
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C = V0 +
q

4πε0
ln




cosh
πx

a
− cos

π(y + b)
a

cosh
πx

a
− cos

π(y − b)
a


.

They are shown in Figure 7.82.•
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EXERCISES 7.8.2

1. The positive x-axis and a half-line from the origin at a positive rotation of angle α are both
held at potential V0. A line charge of q coulombs per metre, perpendicular to the xy-plane, is
at the point z0 = Reφi between the lines. Show that the electrostatic potential between the
lines is

V (r, θ) = V0 +
q

4πε0
ln



r2π/α + R2π/α − 2rπ/αRπ/α cos

π(θ + φ)
α

r2π/α + R2π/α − 2rπ/αRπ/α cos
π(θ − φ)

α


.

2. A line charge of q coulombs per metre of length is located at the point x = a in the xy-plane.
Surrounding the charge is a circle of radius R, centred at the origin, that is held at potential
V0.
(a) Find the potential inside the circle by mapping the situation to a circle with the line charge

at the centre of the circle.
(b) Show that if a negative line charge is placed at the inverse point of the positive one in

the circle (see equation 7.11 in Section 7.2), then their combination leads to the required
potential. This is an example of the method of images where the image is the inverse point
in a circle.

3. A line charge of q coulombs per metre is at x = a on the x-axis. A conducting circle of radius
R (R < a), centred at the origin, is held at potential V0. Show that the electrostatic potential
outside the circle is

V (x, y) = V0 +
q

4πε0
ln

{
(ax− R2)2 + a2y2

R2[(x− a)2 + y2]

}
.

4. A semi-infinite channel consists of the region bounded by the x-axis, −a ≤ x ≤ a, and the lines
x = ±a, y ≥ 0. Each of the lines is at potential V0. A line charge of q coulombs per metre
perpendicular to the xy-plane is located at the point (0, b). Show that the potential in the
channel is
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V (x, y) = V0 +
q

4πε0
ln




sin2 πx

2a
+ sinh2 πy

2a
+ sinh2 πb

2a
+ 2 cos

πx

2a
sinh

πy

2a
sinh

πb

2a

sin2 πx

2a
+ sinh2 πy

2a
+ sinh2 πb

2a
− 2 cos

πx

2a
sinh

πy

2a
sinh

πb

2a


.

5. The positive x- and y-axes have potential V0. A line charge of q coulombs per metre, at the
point (x0, y0), is perpendicular to the xy-plane.
(a) Use the method of images with an equal line charge at (−x0,−y0) and negative line charges

of the same strength at the points (−x0, y0) and (x0,−y0) to show that potential in the first
quadrant can be expresed in the form

V (x, y) = V0 +
q

4πε0
ln

{
[(x− x0)2 + (y + y0)2][(x+ x0)2 + (y − y0)2]
[(x− x0)2 + (y − y0)2][(x+ x0)2 + (y + y0)2]

}
.

(b) Use the mapping w = z2 and Example 7.37 to write the potential in the form

V (r, θ) = V0 +
q

4πε0
ln

{
r4 + R4 − 2r2R2 cos [2(θ + φ)]
r4 + R4 − 2r2R2 cos [2(θ − φ)]

}
,

where z0 = Reφi.
(c) Show that the results in parts (a) and (b) are the same.

6. The semicircle x2 + y2 = R2, y > 0 and the x-axis for |x| ≥ R are at potential V0. A line charge
of q coulombs per metre perpendicular to the xy-plane is at the point z0 = aeφi, where a > R.
Show that the potential in the half-plane y > 0 outside the semicircle is

V (r, θ) = V0 +
q

4πε0
ln

{
[r2 + a2 − 2ar cos (θ + φ)][a2R2 + 1 − 2ar cos (θ − φ)]
[r2 + a2 − 2ar cos (θ − φ)][a2R2 + 1 − 2ar cos (θ + φ)]

}
.

Hint: Map the region of interest to the half-plane v > 0 with w = z + 1/z and use Example
7.37.

7. The positive x-axis is held at potential V0, and there is a line of charge q coulombs per metre,
perpendicular to the xy-plane, at the point z0 = Reφi. Use Exercise 1 to find electrostatic
potential in the xy-plane.


