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§6.2 Evaluation of Definite Integrals

Example 6.6

We have used definite integrals to evaluate contour integrals. It may come as a
surprise to learn that contour integrals and residues can be used to evaluate certain
classes of definite integrals that might otherwise prove intractable.

Definite Integrals Involving Trigonometric Functions
Contour integrals and residues can be useful in the evaluation of definite integrals
of the form

P(cosd,sinb)
. Q(cos0,sinf)

where P(cosf,sinf) and @Q(cos 9, sin @) are polynomials in cos# and sin 6, provided
@ is never equal to zero.

(6.4)

27
Evaluate / # deo.
o 2—-cosb

Solution  We transform the definite integral to the complex plane by setting
z =€ and dz = ie?df = izdf. As 6 traces out the values 0 through 2, z traces
out the circle C': |z| =1 once counterclockwise (Figure 6.5). We replace cos with
cosf = (e + e ) /2 = (2 +271)/2,

2m
1 1 1
/ 7d9:¢7f:2¢¢27dz.
o 2—cosf C2_<z+§*1>zz 22 —4z+1

The (real) definite integral has been replaced by a (complex) contour integral. Be-
cause 22 — 4z + 1 =0 when z = (4 4+ /16 — 4)/2 = 2 + /3, the integrand

1 1
—424+1  (z2-2—-V3)(z—24+V3)
has simple poles at z = 2 + /3, only one of which is interior to C. Since

1 z—24+/3 1
Res 7,2—\/5} = lim -,
[22—4z+1 2—2-v3 (2 =2 —3)(z — 2+ V3) 2v/3

Cauchy’s residue theorem gives

[ ammam=nm(55)] - 7
———df=2i 2mi [ ———= || = —=.e
o 2—cosf 2V/3 V3

i Imz Im z
C .
c\ i
S A\ 2+/3
2-v3 1 Rez R PR X =
v 2-4/3 2 1 5 ez
Figure 6.5 Figure 6.6

This method can be applied to evaluate integrals over intervals other than
[0, 27], but residue theory may not be applicable.
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ﬂ'/2 1
Example 6.7 Evaluate / ——df.
o 2—cosf

Solution The transformation z = e?* transforms the real integral into the contour
integral of Example 6.6 over the quarter circle in Figure 6.6. This time we use the
partial fraction decomposition of the integrand to write

D 1 2\1/§ 2\/_
——df=2i | ———dz=2i dz.
/0 2 —cos¥d Z/sz—élz—i-l ‘ Z/c 2—2—\/§+z—2+f

In the domain D of Figure 6.6, the integrand has an antiderivative, and hence

%

/2 i
= dp=—11 -2 — —1 -2
/0 y— dé \/3{ 0g (2 V3) 0g,(z + \/5)}1,

where we choose branches of the logarithm functions with branch cuts ¢ = —7/2.
Then

/2 1
/ﬁ o0 9= T [108-n2li =2~ VB) ~log_o(i ~ 24 V)

-

—log_, jo(—1— V3) + log_jo(—1+ \/5)}

{[m V2= VB2 14 <”‘Tan_1<ﬁlx/§>>}
_ [111 \/(—2+ V3)2+1+i <7T - Tan1<2 —1\/§>>}

—[1n(1+\/§)+m]+1n(\/§—1)}
{[ \V/8+4v3 —In\/8 —4V3 —In(1+V3) +In (V3 - )]
cifrema () - ()]

We can bring the inverse tangents together using the following identity. When
AB > 0,

4

sl

A—B
Tan 'A — Tan 'B = Tan~! <1 n AB> .

The result is

8+ 4v3 (V3 —1)2
8 —4v/3 (V3 +1)2

/2 1 )
db = 1
/0 2 —cosd 2v/3 .

1 1
1 1 2-v3 243

7+ Tan

R 1+@jﬁ>@fﬁ>
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8+4v34-2V3
8 —4v34+2V3

- % [—77 + Tan™'/3)

‘ |
= n
2v/3
237

9

Real Improper Integrals

Residues can also be effective in evaluation of improper integrals which have
infinite upper or lower limits.

e 1
Evaluate / —dux.
oo 1+t

Solution It is fairly clear that were we to evaluate the contour integral

1
65 4dz
Cl+Z

where C' is shown in Figure 6.7a, and were we to let R — oo, then that part of
the contour integral along the real axis would give rise to the required improper
integral. Let us consider this contour integral then.

Imz Imz
C r
o3l il i il
-R > R>1 Re:z -R R>1 Re:z
Figure 6.7a Figure 6.7b

The integrand (1 + z*)~! has simple poles at the four fourth roots of —1,

67”/4, 6371'1/4’ 6571'1/4’ 677”/4,

only the first two of which are interior to C. L’Hépital’s rule (Theorem 5.24) gives

1 mi/Al s z—e”/‘l_ . 11 2 |
- [1““’6 } =T T T — s Y
; 2
Similarly, Res [1 T 4’637”/4} = %(1 — ). By Cauchy’s residue theorem then,
z
1 V2 V2 .
——dz=2mi |——=(1+i) + (1 -19)| = —=.
Vsﬁcl—i-z4 z m[ 8( +i) + 8( Z)] 7

Suppose we now divide C' into a semicircular part I and a straight line part (Figure

6.7b). Then
R
0 1 1
—_— = 7d d.
V2 /Rl+x4 x+/p1+z4 ‘

If we set z = Re%, 0 < 0 < 7, on I, then inequality 1.39 on the semicircle gives




Example 6.9

260 SECTION 6.2

1 1
Tzt -1 RA-T

1
1+ 24

Hence, by property 4.21,

1 1
/F1+z4 dz‘ <o)

It is clear that the limit of this expression is zero as R — oo, and therefore

R oS
1 1 1
T fim / —da:—i—/—dz —/ 1 v
\/§ R—o0 7R1—|—$4 F1—|—Z4 7ool+x4

This example has illustrated that the contour integral of 1/(1+2z*) around the curve
C of Figure 6.7 can be used to evaluate the improper integral of 1/(1 + z*) from
negative infinity to infinity. The real difficulty in such problems is the choice of
contour and the choice of integrand. We now do two more examples to illustrate
some of these difficulties.

Evaluate / (;Oi dz.
0 Te 4+ 1

Solution We might consider the contour integral

cos z
65 5 dz
Cr + 1
around the contour in Figure 6.7. Certainly along the straight line portion of C' the

integrand reduces to cosz/(z% + 1), but if we set z = x + yi along T, then on the
semicircle

e(:chyi)i + ef(ac+yi)i
2(22+1)

e*eraci + eyf:ci
2(22+1)

cos 2
2241

which becomes infinite as |z| — oco. We shall not therefore be able to show that
the contour integral along I approaches zero as |z| — oo as in Example 6.8. This
means that the choice of cos z/(2? + 1) was perhaps not a convenient one. Consider

instead
21
§ ot
Ccr + 1

where C' is again the contour in Figure 6.7. Since the integrand has simple poles at
z = =i, only z = i being interior to C,

Vgﬁe—dz—zm'Res ) C ot [ BT | o T
cz?2+1 22 +1 =i | (z—i)(z+1)

21 e
Thus,
R i 24
E_/ f—dx+/e—dz
e _Rflf +1 FZ2+1

R R : 21
COsS X S T e
= 25 e 2Ry © 4
/R:E2+1 :”H/qul x+/1~22+1 z
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B cosx et
= / ———dr + / ———dz (since sinz/(z? + 1) is an odd function).
RT + 1 r 22 + 1

If we set z = z 4+ yi = Re? on I, then on this semicircle,

21 (z4yi)i
c ‘ < le | (by inequality 1.39)

22 +1 |22 — 1
e_y

 R2-1
1

< o1 (since y > 0).

Hence, by inequality 4.21,

el 1
[E— P — .
A22+1dz‘ < R2_1(7rR)

Since the limit of this expression is zero as R — o0, it follows that
R . 2% 00 oo
T — lim / 020555 dx + / 26 dz | = / o5 T dx = 2/ osT dz.
€ R-oo\J_pa?+1 rz2+1 Ceo X2 H1 o x2+1

Finally,
> cosx T
BT = T
/0 2210 2t

This example illustrated that we do not always replace x’s by 2’s to obtain the
appropriate contour integral. The following example indicates that the choice of
contour may not always be obvious.

o0
1
Example 6.10 Evaluate / ——dx.
0 1 + x?’

Solution Based on Example 6.8 we should perhaps consider

1
b
01+Z

where C is some appropriate contour. Clearly

a part of C' should be the positive real axis

and possibly a circular arc of radius R > 1.

But we cannot take a semicircle as in Example 6.8

since 1/(1 + 23) has a singularity at z = —1

on the negative real axis. What we should like L
to do then is choose some other line eminating
from the origin say z = re?’, 0 < ¢ < 7, which
leads to a simple solution (Figure 6.8). The Figure 6.8

integrand has simple poles at z = e™/3, —1, 57%/3,

Suppose for the moment we stipulate that ¢ be in the interval 7/3 < ¢ < 7, but, for
the moment, leave it otherwise arbitrary. Cauchy’s residue theorem and L’Hépital’s
rule give

Imz

1 1 ) _ »7i/3
¢ —— dz = 2mi Res ,e™/3 =27 lim S
Cl+23 1+23 z—)e“i/S 1+23
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1 2mi (V3 —i)r

=27 lim = =

z—emt/3 3? 3627Ti/3 3
Thus,
(\/3—2')77/ 1 / 1 / 1
— = ——d —d —— dz.
3 r, 1+23 i r, 1423 i r, 1+23 :
If we set z = Re? on I';, then on this arc
1 I |
1+23| 7 |zP-1 R3-T’
and hence
1 1
——dz| < ———(R).

The limit of this expression is zero as R — oo. Thus,

(V3 —i)r

1 1 1
= 1i —d —d —d
3 RE{;</P11+23 Z‘F/le_{_zg Z+/P31—i—23 Z)
1 & 1
= —d —— d
/F21+z3 Z+/0 1+a3 0

where I's : 2 = re®, 0o > 7 >0 (and 7/3 < ¢ < 7). Our problem then is to choose
¢ in order that the contour integral along I's can be evaluated. Since z = re®’ on

FQa
1 | : |
de= | ——— ¢’d:—¢”/ ———dr.
/F21+z3 ‘ /001—1—7’363¢”6 " ‘ o 1133 "

If we choose ¢ = 27/3, then

1 4 >~ 1
/ 5 dz = —627”/3/ 5 dr,
r, L +2 o 1+

and

1 S
d —d
1473 T+/0 123"

< 1
[ L
0 1+$3

/°° Lo (V3—imr 2 _ 2r

o 1423 3 3-V3i 3V3

General results concerning improper integrals of the types in Examples 6.8-6.10 are
discussed in Exercises 27 and 30.

Thus,
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EXERCISES 6.2

In Exercises 1-17 use a contour integral to evaluate the definite integral.

2T 1 21 1
1. ——df 2. ——df
/0 3 —sind /0 3+2cos«9
2m 1
3. ———df 4. db
/0 6+ 5sinf /0 sm9+20059+4
2 2
5 / 1 40 6. / sin 26
o 4cos?f+3 0 2+cos€
2 2 2
7./ sin” 6 40 8. / cos 6
0 5+4COSH 0 3+C080
T 1
9. ——df 10. dé
/0 3+ 2cosf /0 6+5sm0
7T/2 1 0
11. ——df 12. do
/0 3 —sinf /_ﬂ/g 5+ 2cosf
2 1 1
13. ———df 14.
/0 3+ 2sin6 /0 4+30080
0
1
15. _— 1
5 /Tr4+cos€d9 6. / 5+281n0d9

/2
17. / _cosb g
o 3+cost

In Exercises 18-23 use a contour integral to evaluate the improper integral.

o0 1 o0 .172
18. ——dx 19. dx
/0 2+ x2 /OO (22 + 1) (22 +4)
o 1 *
20. —d 21. d
/_oo 3+ab /0 13
o sinx > z2cosx
22. —dx 23. ——dx
oo T2 2242 o (x2+49)2
27
2n)!
24. Show that cos®" 0 dh = u
o 9211 ()2

25. (a) Use the substitution u = 1/ to show that
1 2 e} 2
1 1
I= / R / 2T
o 1+t 1 T+t

1 [ 1+22
1:_/ LT g,
4/ 1+

and hence

(b) Now use contour integration to calculate I.

26. Use contour integrals to prove the result of Exercise 3 in Section 4.8.
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27. Example 6.8 and Exercises 18-21 are examples of improper integrals of the form

= P(z)
dx
/oo Q(x)
where P(z) and Q(x) are polynomials (of degrees m and n), and Q(x) # 0 for all real z. Show
that when n > m + 2,

/Z gg; doy — 2772'{ sum of the residues of P(z)/Q(z) at }

its poles in the half-plane Im z > 0

With this result, it is no longer necessary to introduce the contour of Figure 6.7. The fact that
n > m + 2 guarantees that the contour integral along I' vanishes as R — oo.

Use Exercise 27 to evaluate the improper integral in Exercises 28—29.

0o 1 o] x2+3
28. ———d 29. d
/_Oo(x2+4x+5)2 v /OO(xQ—i-l)(a;?—x—i-l) a;

30. Example 6.9 and Exercises 22 and 23 are examples of improper integrals of the form

where P(z) and Q(x) are polynomials
(of degrees m and n), a > 0 is real,
and Q(x) # 0 for any real x.

(a) Use the figure to the right to verify that Y

20 =sin6
sinf > —, 0<60<7/2, N
T
called Jordan’s inequality. Prove that for a > 0,
" —aRsin T —aR
do < —(1— .
/0 ¢ - aR( ™)
(b) Show that when n > m + 1, and a > 0,

/OO P(z) cosax do — —97Tm d Sum of the residues of P(2)e**'/Q(z)
oo Q(2) at its poles in the half-plane Im z > 0

/2 b 0

and

/OO P(z) sin ax do — 97 Re 4 sum of the residues of P(2)e**'/Q(z)
oo Q(x) at its poles in the half-plane Imz >0 |’

Hint: Use the contour in Figure 6.7, and show that R can be chosen sufficiently large that
on [

‘P(z)eazi (|am‘Rm+-~+‘a0|)6_aRSin9
Q(z) |~ |bn| B — - -+ = [bo| ’
where P(2) = a4 2™ + -+ + ap and Q(z) = b, 2" + -+ + bg. Now use the result in part (a).

In Exercises 31-35 use the result in Exercise 30 to evaluate the improper integral.

i, [k, o, " omin,
0 4 +5 oo L +4
oo i 2 3]
S~ r COST
33. —d 34. —
/0 21" /Oo(x+a)2+b2 .
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7T/2 1
. Eval —db.
35. Evaluate /0 3 —smnd) do

In Exercises 36—38 verify the formula for the given values of the parameters.

2m
1 2
36. ——————dfl = ———, when 0 < |b
/0 T band aQ—bQ’W en 0 < b <a
27
1 2
37. ———df=——=, when 0 < |
/0 T heosd ) = g Vhen 0< bl <a
27
1 B 2msgnd ] 1, d>0
38./0v d+acos0+bsin0d9_\/W’Wheresgnd_{—17 d<0 7Whena, b, and d

are real with d? > a? + b2.



