
SECTION 3.5 95

§3.5 Complex Logarithm Function

The real logarithm function lnx is defined as the inverse of the exponential function
— y = lnx is the unique solution of the equation x = ey. This works because ex is a
one-to-one function; if x1 6= x2, then ex1 6= ex2 . This is not the case for ez; we have
seen that ez is 2πi-periodic so that all complex numbers of the form z + 2nπi are
mapped by w = ez onto the same complex number as z. To define the logarithm
function, log z, as the inverse of ez is clearly going to lead to difficulties, and these
difficulties are much like those encountered when finding the inverse function of
sin x in real-variable calculus. Let us proceed. We call w a logarithm of z, and write
w = log z, if z = ew. To find w we let w = u + vi be the Cartesian form for w and
z = reθi be the exponential form for z. When we substitute these into z = ew,

reθi = eu+vi = euevi.

According to conditions 1.20, equality of these complex numbers implies that

eu = r or u = ln r,

and
v = θ = arg z.

Thus, w = ln r + θi, and a logarithm of a complex number z is

log z = ln |z| + (arg z)i. (3.21)

We use ln only for logarithms of real numbers; log denotes logarithms of com-
plex numbers using base e (and no other base is used).

Because equation 3.21 yields logarithms of every nonzero complex number, we
have defined the complex logarithm function. It is defined for all z 6= 0, and because
arg z is determined only to a multiple of 2π, each nonzero complex number has an
infinite number of logarithms. For example,

log (1 + i) = ln
√

2 + (π/4 + 2kπ)i = (1/2) ln2 + (8k + 1)πi/4.

Thus, to the complex number 1+i, the logarithm function assigns an infinite number
of values, log (1 + i) = (1/2) ln 2 + (8k + 1)πi/4. They all have the same real part,
but their imaginary parts differ by multiples of 2π. In other words, the logarithm
function is a multiple-valued function; to each complex number in its domain, it
assigns an infinity of values.

Example 3.15 Express log (2 − 3i) in Cartesian form.

Solution Since |2 − 3i| =
√

13, and arg (2− 3i) = 2kπ − Tan−1(3/2),

log (2 − 3i) = ln
√

13 + [2kπ − Tan−1(3/2)]i =
1
2

ln 13 + [2kπ − Tan−1(3/2)]i.•

Some of the properties of the real logarithm function have counterparts in the
complex logarithm. For example, if z = x + yi = reθi, then

elog z = eln r+θi = eln reθi = reθi = z, (3.22a)

(as should be expected from the definition of log z), and
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log (ez) = log (ex+yi) = ln (ex) + (y + 2kπ)i (k an integer)
= x + yi + 2kπi

= z + 2kπi. (3.22b)

In real analysis the counterpart of this equation is log ex = x. The z + 2kπ on the
right side of 3.22b is a reflection of the facts that log z is multiple-valued and the
logarithm is the last operation on the left side of the equation.

If z1 = reθi and z2 = Reφi, then
log (z1z2) = log [rRe(θ+φ)i] = ln (rR) + (θ + φ + 2pπ)i (p an integer)

= (ln r + θi) + (lnR + φi) + 2pπi.

But log z1 = ln r + (θ + 2nπ)i and log z2 = lnR + (φ + 2mπ)i. Hence,

log (z1z2) = (log z1 − 2nπi) + (log z2 − 2mπi) + 2pπi

= log z1 + log z2 + 2(p− n − m)πi

= log z1 + log z2 + 2kπi. (3.23a)

Similarly,

log
(

z1

z2

)
= log z1 − log z2 + 2kπi. (3.23b)

The last two results must be approached with care. Because the logarithm function
is multiple-valued, each equation must be interpreted as saying that given values
for the logarithm terms, there is a value of k for which the equation holds. It is also
possible to write these equations in the forms

log (z1z2) = log z1 + log z2, (3.24a)

log
(

z1

z2

)
= log z1 − log z2. (3.24b)

We interpret them as saying that given values for two of the logarithm terms, there
is a value of the third logarithm for which the equation is valid.

Multiple-valued functions cannot be analytic. To see why, consider the deriva-
tive of log z,

d

dz
log z = lim

∆z→0

log (z + ∆z) − log z

∆z
.

This limit must exist, be unique, and be independent of the mode of approach of
∆z to 0. But this is impossible if there is an infinity of possible choices for log z and
for log (z + ∆z) for each value of ∆z. Thus, only single-valued functions can have
derivatives. We therefore ask if it is possible to restrict the range of the logarithm
function to obtain an analytic function; that is, can we make log z single-valued in
such a way that it will have a derivative. The answer is yes, and there are many
ways to do it. The most natural way to make log z single-valued is to restrict arg z
in equation 3.21 to its principal value Arg z. When this is done, we denote the
resulting single-valued function by

Log z = ln |z| + (Arg z)i, z 6= 0. (3.25)
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Is Log z an analytic function? The answer is yes in a suitably restricted domain.
To see this, we note that at any point on the negative real axis, the imaginary part
of Log z is a discontinuous function. Theorem 2.4 implies therefore that Log z is
discontinuous at points on the negative real axis, and Log z cannot be differentiable
thereon. Suppose we consider the domain |z| > 0, −π < Arg z < π. If we express
Log z in the form

Log z = ln r + θi, −π < θ < π,

partial derivatives of its real and imaginary parts are

∂u

∂r
=

1
r
,

∂v

∂θ
= 1,

∂u

∂θ
= 0,

∂v

∂r
= 0.

Since these derivatives satisfy Cauchy-Riemann equations 2.22 and are continuous
in the domain |z| > 0, −π < Arg z < π, it follows that Log z is an analytic function
in this domain. According to formula 2.23a, the derivative of Log z is

e−θi

(
1
r

)
=

1
reθi

;

that is,

d

dz
Log z =

1
z
. (3.26)

Thus, Log z is analytic in the domain
|z| > 0, −π < Arg z < π. It is defined
for all z 6= 0, but analytic only in the
aforementioned domain. Points on the
negative real axis and z = 0 are singu-
larities of Log z, but they are not iso-
lated singularities (Figure 3.14).
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Figure 3.14

The restriction of arg z to Arg z in the definition of Log z produced a branch of
the multiple-valued logarithm function called the principal branch of log z. Other
choices for arg z lead to different branches. For example, we could restrict arg z to
argφz. When this is done, we denote the resulting branch of the logarithm function
by

logφz = ln |z| + (argφz)i. (3.27)

These branches are analytic in any
domain that does not contain z = 0,
the branch point, or points on the
branch cut, the half-line through
z = 0 making an angle of φ radians
with the positive real axis (Figure 3.15).
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Figure 3.15
In real variable work, the notation loga x indicates that a is the base of the

logarithm function. This is not the case in complex function theory. Only e is used
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as the base for logarithms, and φ in logφ z indicates a particular branch of the log z
function.

Example 3.16 Express Log(−1 +
√

3i), logπ/4(−1 +
√

3i), and log−3π/2(−1 +
√

3i) in Cartesian
form.

Solution The complex number −1 +
√

3i is shown in Figure 3.16. We see that

Log(−1 +
√

3i) = ln 2 + (2π/3)i,

logπ/4(−1 +
√

3i) = ln 2 + (2π/3)i,

log−3π/2(−1 +
√

3i) = ln 2 + (−4π/3)i.•
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Figure 3.16 Figure 3.17

Branch cuts for the logarithm function need not be straight lines. We could
stipulate that the branch cut of a branch of log z be the parabolic curve in Figure
3.17. We simply agree that at each point on this curve, arguments of z will be
specified in a certain way, perhaps as 0 < arg z < π/2, that arguments will increase
to the left of the curve, and that they will jump by 2π across the curve.

To understand branches of a multiple-valued function f , it is sometimes helpful
to visualize ranges of the branches in the w = f(z) plane. The three branches Log z,
log0z, and log2πz of log z are illustrated in Figures 3.18–3.20. Each branch maps
the z-plane (less z = 0) onto a horizontal strip of width 2π.
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Defining branches of log z is reminiscent of the derivation of the inverse sine
function in real-variable work. The situations are very similar. Because sin x is
2π-periodic, defining y = sin−1x when x = sin y results in many values for sin−1x.
Principal values −π/2 ≤ Sin−1x ≤ π/2 are chosen in order to create a single-valued
function. The difference in the two situations is that we almost always use principal
values of Sin−1x; other choices are possible, but they are seldom used. In order that
log z be single-valued, we restrict arg z to an interval of length 2π. This leads to
branches of log z, the principal branch Log z, but other branches as well. Because
we have taken the effort to discuss other branches of log z, and even given some of
them special notations (logφz), the implication is that they are important. This is
indeed true. Different problems require different branches of log z.

Quite often in applications, we encounter logarithm functions where arguments
are not just z; they are functions f(z) of z. For example, branch points of the
function Log[f(z)] are at the zeros of f(z), and the branch cuts are where f(z) is
real and negative. An example follows.

Example 3.17 Find branch points and branch cuts for the function Log(z2 − 1).

Solution Branch points of the function occur at the zeros of z2 − 1, namely
z = ±1. Branch cuts occur where z2 − 1 is real and negative. If we set z = x + yi,
then z2 − 1 = (x2 − y2 − 1) + 2xyi. This is real and negative if x2 − y2 − 1 < 0 and
2xy = 0. The second gives x = 0 or y = 0. When x = 0, the inequality requires
−y2−1 < 0, which is valid for all y. When y = 0, the inequality requires x2−1 < 0,
that part of the real axis between x = ±1. Branch cuts are therefore the real axis
between ±1, including ±1, and the imaginary axis (Figure 3.21).•
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Branch points of the function logφ[f(z)] are once again at the zeros of f(z).
Branch cuts are where one of the arguments of f(z) is equal to φ. Here is an
example.

Example 3.18 Find branch points and branch cuts for the function log3π/2(3 − 5z).

Solution Branch points occur at the zeros of 3−5z, there being only one z = 3/5.
Branch cuts occur where one of the arguments of 3 − 5z is equal to 3π/2. If we
set z = x + yi, then 3 − 5z = (3 − 5x) − 5yi. If θ is an argument of this complex
number, then

cos θ =
3 − 5x√

(3− 5x)2 + 25y2
, sin θ =

−5y√
(3− 5x)2 + 25y2

.

For θ to be equal to 3π/2, the first of these requires x = 3/5, and then the second
implies that

−1 =
−5y√
25y2

=⇒ 5|y| = 5y =⇒ y > 0.

The branch cut is therefore the vertical half-line above z = 3/5, including z = 3/5,
(Figure 3.22).•

EXERCISES 3.5

In Exercises 1–4 express the complex number(s) in Cartesian form.
1. log i 2. Log (2− 6i)
3. logπ/2 (1 + i) 4. log−3 (−2 + 3i)

In Exercises 5–8 find all solutions of the equation.

5. Log z = πi/2 6. log1 z = 2 + 3i

7. z4 = i 8. ez+2 = 4

Use the complex logarithm function to find all solutions of the equations in Exercises
9–22.
9. Exercise 15 in Section 3.2 10. Exercise 16 in Section 3.2

11. Exercise 17 in Section 3.2 12. Exercise 18 in Section 3.2
13. Exercise 19 in Section 3.2 14. Exercise 20 in Section 3.2
15. Exercise 21 in Section 3.2 16. Exercise 22 in Section 3.2
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17. Exercise 13 in Section 3.3 18. Exercise 14 in Section 3.3
19. Exercise 15 in Section 3.3 20. Exercise 9 in Section 3.4
21. Exercise 10 in Section 3.4 22. Exercise 11 in Section 3.4

23. You may have noticed that we have not stated the complex analogue of ln (xa) = a ln x. The
reason for this is that in general

log (za) 6= a log z.

Illustrate this with z = 1 + i and a = 4.

24. Is logφ(z1z2) = logφ z1 + logφ z2?

25. Which branches of log z have zeros? What are the zeros?

26. Find f ′(3 + i) if f(z) = Log (2z + 3 − i).

27. Find f ′′(2i) if f(z) = log3π/8(−z + i).

28. Is Log ez = z?

The function Log [f(z)] has branch points where f(z) = 0 and branch cuts where f(z) is
real and negative. In Exercises 29–32 identify branch points and branch cuts for the
function.
29. Log (z + i) 30. Log (z − 1)
31. Log (3− 2z) 32. Log (3z − 2 + 4i)

33. (a) What are the branch points for the function f(z) = Log (z2 − 4)?
(b) Show that the imaginary axis and that part of the real axis between the branch points are

branch cuts.

34. Find branch points and branch cuts for f(z) = Log (z2 + 1).

The function logφ[f(z)] has branch points where f(z) = 0 and branch cuts where one
of the arguments of f(z) is equal to φ. In Exercises 35–38 identify branch points and
branch cuts for the function.
35. log0(z − 2i) 36. logπ/2(3 − z)
37. log−π/2(4 − 2z) 38. log2(2z + 1)

39. (a) What are the branch points for the function f(z) = log0(z
2 + 1)?

(b) Show that the real axis and the line segment joining the branch points are branch cuts.

40. Find branch points and branch cuts for f(z) = log3π/2 (1− z2).

41. In this exercise we show that logarithm functions cannot always be combined in what might be
thought to be natural ways.
(a) Show that in general

logφ(z2 − 1) 6= logφ(z + 1) + logφ(z − 1).

Illustrate with φ = −π and z = −1 + i. Why is this not a contradiction of property 3.24a?
(b) Show that in general

logφ

(
z + 1
z − 1

)
6= logφ(z + 1) − logφ(z − 1).

Illustrate with φ = 0 and z = −1 + i. Why is this not a contradiction of property 3.24b?
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42. Compare branch cuts for f(z) = Log (z2 − 1) and g(z) = Log (z + 1) + Log (z − 1).

43. Compare branch cuts for f(z) = Log (4− z2) and g(z) = Log (2 + z) + Log (2 − z).

44. Compare branch cuts for f(z) = log−π/2(z2 − 1) and g(z) = log−π/2(z + 1) + log−π/2(z − 1).

45. Compare branch cuts for f(z) = log−π/2(4 − z2) and g(z) = log−π/2(2 + z) + log−π/2(2− z).

46. (a) Prove that for b > a > 1, the function Log
(

z − a

z − b

)
is analytic except for points on the Re z

axis for which a ≤ Re z ≤ b.

(b) Verify that for |z| > b, Log
(

z − a

z − b

)
= Log

(
1 − a

z

)
− Log

(
1 − b

z

)
.

Mapping Exercises

47. Show that w = Log z, regarded as a mapping from the z-plane to the w-plane, performs the
mappings indicated in the figures below.
(a)

z

z

w

w
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w z=Log

(b)
z

z

w

w

Im

Re

Im

Re

w z=Log

(c)
z

z

w

w

Im

Re

Im

Re

w z=Log

11

(d)
z

z

w

w

Im

Re

Im

Re

w z=Log
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(e)
z

z

w

w

Im

Re

Im

Re

w z=Log

a b1

48. Show that the transformation w = Log
[
coth

(πz

2a

)]
maps the semi-infinite strip −a ≤ Im z ≤ a,

Re z ≥ 0 to the infinite strip −π/2 ≤ Imw ≤ π/2.


