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§11.6 Application of Fourier Sine and Cosine Transforms to Initial Boundary Value
Problems

Fourier sine and cosine transforms are used to solve initial boundary value problems
associated with second order partial differential equations on the semi-infinite inter-
val x > 0. Because property 11.43d for the Fourier sine transform utilizes the value
of the function at x = 0, the sine transform is applied to problems with a Dirichlet
boundary condition at x = 0. Similarly, property 11.43b indicates that the cosine
transform should be used when the boundary condition at x = 0 is of Neumann
type.

Example 11.20 Solve the vibration problem

∂2y

∂t2
= c2 ∂2y

∂x2
, x > 0, t > 0, (11.52a)

y(0, t) = f1(t), t > 0, (11.52b)
y(x, 0) = f(x), x > 0, (11.52c)
yt(x, 0) = g(x), x > 0, (11.52d)

for displacement of a semi-infinite string with prescribed motion at its left end x = 0.

Solution Because the boundary condition at x = 0 is Dirichlet, we apply the
Fourier sine transform to the PDE and use property 11.43d for the transform of
∂2y/∂x2,

d2ỹ

dt2
= −ω2c2ỹ(ω, t) + ωc2f1(t).

Thus, the Fourier sine transform ỹ(ω, t) of y(x, t) must satisfy the ODE

d2ỹ

dt2
+ ω2c2ỹ = ωc2f1(t)

subject to transforms of initial conditions 11.52c,d,

ỹ(ω, 0) = f̃(ω), ỹ′(ω, 0) = g̃(ω).

Variation of parameters leads to the following general solution of the ODE

ỹ(ω, t) = A cos cωt + B sin cωt + c

∫ t

0

f1(u) sin cω(t − u) du.

The initial conditions require A and B to satisfy

f̃(ω) = A, g̃(ω) = cωB.

Hence,

ỹ(ω, t) = f̃(ω) cos cωt +
g̃(ω)
cω

sin cωt + c

∫ t

0

f1(u) sin cω(t − u) du, (11.53)

and y(x, t) is the inverse transform of this function

y(x, t) =
2
π

∫ ∞

0

ỹ(ω, t) sinωxdω. (11.54)

The first term in this integral is
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2
π

∫ ∞

0

f̃(ω) cos cωt sinωx dω =
2
π

∫ ∞

0

1
2
f̃(ω)[sinω(x − ct) + sinω(x + ct)] dω

=
1
2
[f(x − ct) + f(x + ct)],

provided f(x) is extended as an odd function.
According to Exercise 11 in Section 11.5, the Fourier cosine transform of h(x+

ct)−h(x−ct) is (sin cωt)/ω. Consequently, convolution identity 11.44d implies that
the inverse sine transform of [g̃(ω)/(cω)] sin cωt is

1
2c

∫ ∞

0

[h(v) − h(v − ct)][g(x + v) + g(x − v)] dv =
1
2c

[∫ ct

0

g(x + v) dv +
∫ ct

0

g(x − v) dv

]
,

provided g(x) is extended as an odd function for x < 0. When we set u = x+ v and
u = x − v, respectively, in these integrals, the result is

1
2c

[∫ x+ct

x

g(u) du +
∫ x−ct

x

g(u)(−du)
]

=
1
2c

∫ x+ct

x−ct

g(u) du.

The inverse transform of the integral term in ỹ(ω, t) can also be expressed in closed
form if we set u = c(t − v),

c

∫ t

0

f1(v) sin cω(t − v) dv = c

∫ 0

ct

f1

(
t − u

c

)
sinωu

(
−du

c

)
=

∫ ct

0

f1

(
t − u

c

)
sin ωudu.

But this is the Fourier sine transform of the function
{

f1

(
t − x

c

)
, x < ct

0, x > ct

or
{

0, t < x/c

f1

(
t − x

c

)
, t > x/c

= f1

(
t − x

c

)
h

(
t − x

c

)
.

The solution is therefore

y(x, t) =
1
2
[f(x − ct) + f(x + ct)] +

1
2c

∫ x+ct

x−ct

g(u) du + f1

(
t − x

c

)
h

(
t − x

c

)
.(11.55)

The first two terms are the d’Alembert part of the solution. The last term is due
to the nonhomogeneity at the end x = 0; it can be interpreted physically, and this
is most easily done when f(x) = g(x) = 0. In this case, the complete solution is

y(x, t) = f1

(
t − x

c

)
h

(
t − x

c

)
.

A point x on the string remains at rest until time t = x/c, when it begins to execute
the same motion as the end x = 0. The time x/c taken by the disturbance to reach
x is called retarded time. The disturbance f1(t) at x = 0 travels down the string
with velocity c.

The solution of the original problem is a superposition of the d’Alembert dis-
placement and the displacement due to the end effect at x = 0.•
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Example 11.21 The temperature of a semi-infinite rod at time t = 0 is f(x), x ≥ 0. For time t > 0,
heat is added to the rod uniformly over the end x = 0 at a variable rate f1(t) W/m2.
The initial boundary value problem for temperature U(x, t) in the rod is

∂U

∂t
= k

∂2U

∂x2
, x > 0, t > 0, (11.56a)

Ux(0, t) = −κ−1f1(t), t > 0, (11.56b)
U(x, 0) = f(x), x > 0. (11.56c)

Find U(x, t).

Solution Because the boundary condition at x = 0 is Neumann, we apply the
Fourier cosine transform to the PDE and use property 11.43b,

dŨ

dt
= −kω2Ũ(ω, t) +

k

κ
f1(t).

Thus, the Fourier cosine transform Ũ(ω, t) must satisfy the ODE

dŨ

dt
+ kω2Ũ =

k

κ
f1(t)

subject to the transform of initial condition 11.56c,

Ũ(ω, 0) = f̃(ω).

A general solution of the ODE is

Ũ (ω, t) = Ce−kω2t +
k

κ

∫ t

0

e−kω2(t−u)f1(u) du,

and the initial condition requires f̃(ω) = C. Consequently,

Ũ (ω, t) = f̃(ω)e−kω2t +
k

κ

∫ t

0

e−kω2(t−u)f1(u) du, (11.57)

and the required temperature is the inverse cosine transform of this function. Ac-
cording to Exercise 9 in Section 11.5, the Fourier cosine transform of e−ax2

is
1
2

√
π

a
e−ω2/(4a), or, conversely, the inverse Fourier cosine transform of e−kω2t is

1√
kπt

e−x2/(4kt). Convolution property 11.44a therefore gives the inverse cosine

transform of f̃(ω)e−kω2t as

1
2

∫ ∞

0

f(v)
1√
kπt

[e−(x−v)2/(4kt) + e−(x+v)2/(4kt)] dv

=
1

2
√

kπt

∫ ∞

0

f(v)[e−(x−v)2/(4kt) + e−(x+v)2/(4kt)] dv.

Furthermore, the inverse cosine transform of e−kω2(t−u) is
1√

kπ(t − u)
e−x2/[4k(t−u)],

and therefore the inverse transform of the integral term can be expressed in the form

F−1
c

{∫ t

0

e−kω2(t−u)f1(u) du

}
=

∫ t

0

f1(u)√
kπ(t − u)

e−x2/[4k(t−u)] du.
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Thus, the temperature function is

U(x, t) =
1

2
√

kπt

∫ ∞

0

f(v)[e−(x−v)2/(4kt) + e−(x+v)2/(4kt)] dv

+
√

k

κ
√

π

∫ t

0

f1(u)√
t − u

e−x2/[4k(t−u)] du.• (11.58)

Example 11.22 Solve the following potential problem in the quarter plane x > 0, y > 0,
∂2V

∂x2
+

∂2V

∂y2
= 0, x > 0, y > 0, (11.59a)

V (0, y) = g(y), y > 0, (11.59b)
Vy(x, 0) = f(x), x > 0. (11.59c)

Solution Superposition can be used to express V (x, y) as the sum of functions
V1(x, y) and V2(x, y) satisfying

∂2V1

∂x2
+

∂2V1

∂y2
= 0, x > 0, y > 0,

V1(0, y) = g(y), y > 0,

∂V1(x, 0)
∂y

= 0, x > 0,

∂2V2

∂x2
+

∂2V2

∂y2
= 0, x > 0, y > 0,

V2(0, y) = 0, y > 0,

∂V2(x, 0)
∂y

= f(x), x > 0.

To find V1(x, y) we apply Fourier cosine transform 11.40a (with respect to y) to its
PDE and use property 11.43b,

d2Ṽ1

dx2
− ω2Ṽ1(x, ω) = 0, x > 0.

This transform function Ṽ1(x, ω) is also subject to

Ṽ1(0, ω) = g̃(ω).

A general solution of the ODE is

Ṽ1(x, ω) = Aeωx + Be−ωx.

For Ṽ1(x, ω) to remain bounded as x → ∞, A must be zero, and the boundary
condition then implies that B = g̃(ω). Hence,

Ṽ1(x, ω) = g̃(ω)e−ωx.

To invert this transform, first recall from to Example 11.17 that

Fc

{
e−ay

}
(ω) =

a

a2 + ω2
when a > 0.

With Exercise 19 in Section 11.5, we can say that

F−1
c {e−aω}(y) =

2
π

a

a2 + y2
.

Convolution property 11.44c, now gives

V1(x, y) =
1
2

∫ ∞

0

g(v)
(

2
π

)[
x

(y − v)2 + x2
+

x

(y + v)2 + x2

]
dv

=
x

π

∫ ∞

0

g(v)
[

1
x2 + (y − v)2

+
1

x2 + (y + v)2

]
dv.
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Taking Fourier sine transforms with respect to x in order to find V1(x, y) leads to a
nonhomogeneous ODE in Ṽ1(ω, y) that is more difficult to solve.

To find V2(x, y) we apply the Fourier sine transform with respect to x to its
PDE and use property 11.43d,

d2Ṽ2

dy2
− ω2Ṽ2(ω, y) = 0.

The transform must also satisfy

dṼ2(ω, 0)
dy

= f̃(ω).

A general solution of the ODE is

Ṽ2(ω, y) = Aeωy + Be−ωy.

For Ṽ2(ω, y) to remain bounded as y → ∞, A must be zero, and the boundary
condition on Ṽ2 then implies that B = −f̃(ω)/ω. Hence,

Ṽ2(ω, y) = − f̃(ω)
ω

e−ωy

and

V2(x, y) =
2
π

∫ ∞

0

− f̃(ω)
ω

e−ωy sinωx dω.

The final solution is

V (x, y) =
x

π

∫ ∞

0

g(v)
[

1
x2 + (y − v)2

+
1

x2 + (y + v)2

]
dv +

2
π

∫ ∞

0

− f̃(ω)
ω

e−ωy sin ωxdω.•

Time-dependent heat and vibration problems on infinite or semi-infinite inter-
vals require Fourier transforms. The boundary value problem in Example 11.22
also requires Fourier transforms since both x and y are on semi-infinite intervals.
When solving Laplace’s (or Poisson’s) equation in the xy-plane where one of x or
y is of finite extent, it may not be advantageous to introduce Fourier transforms;
separation of variables or finite Fourier transforms may be preferable. We illustrate
in the following example.

Example 11.23 A thin plate has edges along y = 0, y = L′, and x = 0 for 0 ≤ y ≤ L′. The other
edge is so far to the right that its effect may be considered negligible. Assuming no
heat flow in the z-direction, find the steady-state temperature inside the plate (for
x > 0, 0 < y < L′) if sides y = 0 and y = L′ are held at constant temperature U◦

0 C,
and side x = 0 has temperature f(y), 0 ≤ y ≤ L′.

Solution The boundary value problem for steady-state temperature U(x, y) is

∂2U

∂x2
+

∂2U

∂y2
= 0, x > 0, 0 < y < L′, (11.60a)

U(x, 0) = U(x,L′) = U0, x > 0, (11.60b)
U(0, y) = f(y), 0 < y < L′. (11.60c)

The finite Fourier transform associated with y is
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f̃(λn) =
∫ L′

0

f(y)Yn(y) dy,

where λ2
n = n2π2/L′2 and Yn(y) =

√
2/L′ sinλny are eigenpairs of the Sturm-

Liouville system

Y ′′ + λ2Y = 0, 0 < y < L′, Y (0) = Y (L′) = 0.

When we apply the transform to the PDE, and use integration by parts,

∂2Ũ

∂x2
= −

∫ L′

0

∂2U

∂y2
Yn(y) dy = −

{
∂U

∂y
Yn

}L′

0

+
∫ L′

0

∂U

∂y
Y ′

n dy

=
{
UY ′

n

}L′

0
−

∫ L′

0

UY ′′
n dy = U0Y

′
n(L′) − U0Y

′
n(0)−

∫ L′

0

U
(
−λ2

nYn

)
dy

= U0[Y ′
n(L′) − Y ′

n(0)] + λ2
nŨ .

Thus, Ũ(x, λn) must satisfy the ODE

d2Ũ

dx2
− λ2

nŨ = U0[Y ′
n(L′) − Y ′

n(0)],

subject to

Ũ(0, λn) = f̃(λn).

A general solution of the differential equation is

Ũ(x, λn) = Aeλnx + Be−λnx − U0[Y ′
n(L′) − Y ′

n(0)]
λ2

n

.

For this to remain bounded as x → ∞, we must set A = 0, in which case the
boundary condition requires

f̃(λn) = B − U0[Y ′
n(L′)− Y ′

n(0)]
λ2

n

.

Thus,

Ũ(x, λn) = f̃(λn)e−λnx − U0[Y ′
n(L′) − Y ′

n(0)]
λ2

n

(1− e−λnx).

The inverse finite Fourier transform now gives

U(x, y) =
∞∑

n=1

Ũ (x, λn)Yn(y)

=
∞∑

n=1

{
f̃(λn)e−λnx − U0[Y ′

n(L′) − Y ′
n(0)]

λ2
n

(1 − e−λnx)
}√

2
L′ sinλny

=

√
2
L′

∞∑

n=1

f̃(λn)e−nπx/L′
sin

nπy

L′ +
2U0

π

∞∑

n=1

[1 + (−1)n+1]
n

(1 − e−nπx/L′
) sin

nπy

L′ .

Since

1̃ =
∫ L′

0

√
2
L′ sin

nπy

L′ dy =
√

2L′[1 + (−1)n+1]
nπ

,
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it follows that

U(x, y) = U0 +

√
2
L′

∞∑

n=1

{
f̃(λn) −

√
2L′U0[1 + (−1)n+1]

nπ

}
e−nπx/L′

sin
nπy

L′ .•

EXERCISES 11.6
Part A Heat Conduction

1. Use a Fourier transform to find an integral representation for the solution of the heat conduction
problem

∂U

∂t
= k

∂2U

∂x2
, x > 0, t > 0,

U(0, t) = U = constant, t > 0,

U(x, 0) = 0, x > 0.

(Hint: See Exercise 20 in Section 11.5 when inverting the transform.) Is the solution the
same as that in Example 10.9?

(b) Plot the solution on the interval 0 ≤ x ≤ 5 with k = 10−6 and U = 1 for t = 105 and
t = 106.

(c) Comment on the possibility of using the transformation W = U − U to remove the nonho-
mogeneity from the boundary condition.

2. (a) Use a Fourier transform to find an integral representation for the solution of the heat
conduction problem

∂U

∂t
= k

∂2U

∂x2
, x > 0, t > 0,

Ux(0, t) = −κ−1Q0 = constant, t > 0,

U(x, 0) = 0, x > 0.

(Hint: See Exercise 20 in Section 11.5 when inverting the transform.) Plot the solution on
the interval 0 ≤ x ≤ 5 with k = 10−6, κ = 10, and Q0 = 1000 for t = 105 and t = 106.

(b) Describe the temperature of the left end of the rod.

3. (a) Use a Fourier transform to find an integral representation for the solution of the heat
conduction problem

∂U

∂t
= k

∂2U

∂x2
+

k

κ
g(x, t), x > 0, t > 0,

U(0, t) = f1(t), t > 0,

U(x, 0) = f(x), x > 0.

(b) Simplify the solution in part (a) when g(x, t) ≡ 0, f1(t) ≡ 0, and f(x) = U0 = constant.
(c) Simplify the solution in part (a) when g(x, t) ≡ 0, f(x) ≡ 0, and f1(t) = U = constant. Is

it the solution of Exercise 1?

4. (a) Use a Fourier transform to find an integral representation for the solution of the heat
conduction problem
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∂U

∂t
= k

∂2U

∂x2
+

k

κ
g(x, t), x > 0, t > 0,

Ux(0, t) = −κ−1f1(t), t > 0,

U(x, 0) = f(x), x > 0.

(b) Simplify the solution in part (a) when g(x, t) ≡ 0, f1(t) ≡ 0, and f(x) = U0 = constant.
(c) Simplify the solution in part (a) when g(x, t) ≡ 0, f(x) ≡ 0, and f1(t) = Q0 = constant. Is

it the solution of Exercise 2?

5. Use the Fourier transform of Exercise 22 in Section 11.5 to find an integral representation for
the solution of the heat conduction problem

∂U

∂t
= k

∂2U

∂x2
, x > 0, t > 0,

−κ
∂U(0, t)

∂x
+ µU(0, t) = µUm = constant, t > 0,

U(x, 0) = 0, x > 0.

6. Use the Fourier transform of Exercise 22 in Section 11.5 to find an integral representation for
the solution of the heat conduction problem

∂U

∂t
= k

∂2U

∂x2
+

k

κ
g(x, t), x > 0, t > 0,

−κ
∂U(0, t)

∂x
+ µU(0, t) = µf1(t), t > 0,

U(x, 0) = f(x), x > 0.

Part B Vibrations

7. Solve the vibration problem of Example 11.20 if a unit force acts at the point x = x0 on the
string for all t > 0.

8. Repeat Example 11.20 if the Dirichlet boundary condition at x = 0 is replaced by the Neumann
condition

yx(0, t) = −τ−1f1(t).

Constant τ is the tension in the string. This boundary condition describes the situation where
the end x = 0 of the string, taken as massless, moves vertically with tension and an external
force f1(t) acting on the end.
Part C Potential, Steady-state Heat Conduction, Static Deflection of Membranes

9. Solve the boundary value problem

∂2V

∂x2
+

∂2V

∂y2
= 0, x > 0, 0 < y < L,

V (0, y) = 0, 0 < y < L,

V (x, 0) = f(x), x > 0,

V (x,L) = g(x), x > 0.
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10. Solve the boundary value problem in Exercise 9 if the boundary condition along the x-axis is
Neumann Vy(x, 0) = f(x).

11. Solve the boundary value problem in Exercise 9 if the boundary condition along y = L is
Neumann Vy(x,L) = g(x).

12. Solve the boundary value problem in Exercise 9 if the boundary condition along x = 0 is
homogeneous Neumann Vx(0, y) = 0.

13. Solve the boundary value problem

∂2V

∂x2
+

∂2V

∂y2
= 0, x > 0, y > 0,

V (0, y) = g(y), y > 0,

V (x, 0) = f(x), x > 0.

14. Solve the boundary value problem for potential in the semi-infinite strip 0 < y < L, x > 0 when
potential on y = 0 and y = L is zero and that on x = 0 is f(y). Simplify the solution when
f(y) is constant.

15. (a) Use Exercises 9 and 14 to solve Exercise 14 when potentials on x = 0, y = 0, and y = L′

are f(y), g1(x), and g2(x), respectively.
(b) Try to solve the problem using a Fourier sine transform on x.
(c) Try to solve the problem using a finite Fourier transform on y.

16. A thin plate has edges along y = 0, y = L, and x = 0 for 0 ≤ y ≤ L. The other edge is so far to
the right that its effect may be considered negligible. Assuming no heat flow in the z-direction,
find the steady-state temperature inside the plate (for x > 0, 0 < y < L) if side y = 0 is held at
temperature 0◦C, side y = L is insulated, and, along x = 0:
(a) temperature is held at a constant U◦

0 C.
(b) heat is added to the plate at a constant rate Q0 > 0 W/m2 over the interval 0 < y < L/2

and extracted at the same rate for L/2 < y < L.
(c) heat is transferred to a medium at constant temperature Um according Newton’s law of

cooling.

17. What are the solutions to Exercise 16 if edge y = 0 is insulated instead of held at temperature
0◦C.

18. Does the function

U(x, y) =
{
−Q0x/κ, 0 < y < L/2
Q0x/κ, L/2 < y < L

satisfy the PDE and the boundary conditions on x = 0, y = 0, and y = L in Exercise 16(b)?
Why is this not the solution?

19. (a) A thin plate has edges along y = 0, y = L, and x = 0 for 0 ≤ y ≤ L. The other edge is
so far to the right that its effect may be considered negligible. Assuming no heat flow in
the z-direction, find the steady-state temperature inside the plate (for x > 0, 0 < y < L) if
side x = 0 is held at temperature f(y), side y = 0 is held at temperature zero, and along
side y = L heat is transferred according to Newton’s law of cooling to a medium at constant
temperature Um.

(b) Simplify the solution in part (a) when Um = 0 and f(y) = U0, a constant.

20. Repeat Exercise 19 when side y = 0 is insulated.
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21. (a) A uniform charge distribution of density σ coulombs per cubic metre occupies the region
bounded by the planes x = 0, y = 0, and x = L (y ≥ 0). If the planes x = 0 and y = 0 are
kept at zero potential and x = L is maintained at a constant potential VL, find the potential
between the planes using:

(i) a finite Fourier transform.
(ii) a transformation to remove the constant nonhomogeneities σ and VL.
(b) Can we apply a Fourier sine transform with respect to y?

22. If the charge distribution in Exercise 21 is a function of y, σ(y) = e−y, find the potential between
the plates.

23. Solve Exercise 22 when VL = 0, using
(a) a finite Fourier transform (b) the Fourier sine transform


