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§5.2 Generalized Fourier Series

In Chapters 3 and 4 we learned how to express functions f(x), which are piecewise
smooth on the interval 0 ≤ x ≤ L, in the form of Fourier sine series

f(x+) + f(x-)
2

=
∞∑

n=1

bn sin
nπx

L
where bn =

2
L

∫ L

0

f(x) sin
nπx

L
dx. (5.8)

We regard the Fourier coefficients bn as the components of the function f(x) with
respect to the basis functions {sin (nπx/L)}. In Section 5.1 we discovered that
the sin (nπx/L) are eigenfunctions of Sturm-Liouville system 5.1, and it has be-
come our practice to replace eigenfunctions with normalized eigenfunctions, namely√

2/L sin (nπx/L). Representation 5.8 can easily be replaced by an equivalent ex-
pression in terms of these normalized eigenfunctions,

f(x+) + f(x-)
2

=
∞∑

n=1

cn

(√
2
L

sin
nπx

L

)
where cn =

∫ L

0

f(x)

(√
2
L

sin
nπx

L

)
dx. (5.9)

Constants cn are the components of f(x) with respect to the orthonormal basis
{
√

2/L sin (nπx/L)}. Equation 5.8 should be compared with equation 3.3 in Section
3.1, together with the fact that the length of sin (nπx/L) is

√
L/2. Equation 5.9 is

analogous to equation 3.1.
The same function f(x) can be represented by a Fourier cosine series in terms

of normalized eigenfunctions of system 5.2,

f(x+) + f(x-)
2

=
c0√
L

+
∞∑

n=1

cn

(√
2
L

cos
nπx

L

)
(5.10a)

where

c0 =
∫ L

0

f(x)
(

1√
L

)
dx and cn =

∫ L

0

f(x)

(√
2
L

cos
nπx

L

)
dx, n > 0. (5.10b)

A natural question to ask now is the following: Given a function f(x), defined
on the interval a ≤ x ≤ b, and given a Sturm-Liouville system on the same interval,
is it always possible to express f(x) in terms of the orthonormal eigenfunctions of the
Sturm-Liouville system? It is still not clear that every Sturm-Liouville system has
an infinity of eigenfunctions, but, as we shall see, this is indeed the case. We wish
then to investigate the possibility of finding coefficients cn such that on a ≤ x ≤ b,

f(x) =
∞∑

n=1

cnyn(x), (5.11)

where yn(x) are the orthonormal eigenfunctions of Sturm-Liouville system 5.3. If we
formally multiply equation 5.11 by p(x)ym(x), and integrate term-by-term between
x = a and x = b,

∫ b

a

p(x)f(x)ym(x) dx =
∞∑

n=1

cn

∫ b

a

p(x)yn(x)ym(x) dx.
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Because of the orthogonality of eigenfunctions, only the mth term in the series does
not vanish, and therefore

∫ b

a

p(x)f(x)ym(x) dx = cm. (5.12)

This has been strictly a formal procedure. It has illustrated that if f(x) can be
represented in form 5.11, and if the series is suitably convergent, coefficients cn can
be calculated according to formula 5.12. What we must answer is the converse ques-
tion: If coefficients cn are calculated according to 5.12, where yn(x) are orthonormal
eigenfunctions of a Sturm-Liouville system, does series 5.11 converge to f(x)? This
question is answered in the following theorem.

Theorem 5.2 Let p, q, r, r′, and (pr)′′ be real and continuous functions of x for a ≤ x ≤ b, and let
p > 0 and r > 0 for a ≤ x ≤ b. Let l1, l2, h1, and h2 be real constants independent
of λ. Then Sturm-Liouville system 5.3 has a countable infinity of simple eigenvalues
λ1 < λ2 < λ3 < · · · (all real), not more than a finite number of which are negative,
and limn→∞ λn = ∞. Corresponding orthonormal eigenfunctions yn(x) are such
that yn(x) and yn

′(x) are continuous and |yn(x)| and |λn
−1/2yn

′(x)| are uniformly
bounded with respect to x and n. If f(x) is piecewise smooth on a ≤ x ≤ b, then
for any x in a < x < b,

f(x+) + f(x-)
2

=
∞∑

n=1

cnyn(x), where cn =
∫ b

a

p(x)f(x)yn(x) dx. (5.13)

Series 5.13 is called the generalized Fourier series for f(x) with respect to
the eigenfunctions yn(x), and the cn are the generalized Fourier coefficients.
They are the components of f(x) with respect to the orthonormal basis of eigen-
functions {yn(x)}. Notice the similarity between this theorem and Theorem 3.2 in
Section 3.1 for Fourier series. Both guarantee pointwise convergence of Fourier series
for a piecewise smooth function to the value of the function at a point of continuity
of the function, and to the average value of right- and left-hand limits at a point of
discontinuity. Because the eigenfunctions in Theorem 3.2 of Section 3.1 are periodic,
convergence is also assured at the end points of the interval 0 ≤ x ≤ 2L. This is
not the case in Theorem 5.2 above. Eigenfunctions are not generally periodic, and
convergence at x = a and x = b is not guaranteed. It should be clear, however, that
when l1 = 0 (in which case yn(a) = 0) convergence of the series in 5.13 at x = a
can be expected only if f(a) = 0 also. A similar statement can be made at x = b.

Because series 5.13 is a representation of the function f(x) in terms of normal-
ized eigenfunctions of a regular Sturm-Liouville system, it is also called an eigen-
function expansion of f(x). We use both terms, namely, generalized Fourier series
and eigenfunction expansion, freely and interchangeably.

We say that the normalized eigenfunctions of Sturm-Liouville system 5.3 form a
complete set for the space of piecewise smooth functions on the interval a ≤ x ≤ b;
this means that every piecewise smooth function can be expressed in a convergent
series of the eigenfunctions.

When a regular Sturm-Liouville system satisfies the conditions of this theorem
as well as the conditions that q(x) ≥ 0 for a ≤ x ≤ b, and l1h1 ≥ 0, l2h2 ≥ 0, it is
said to be a proper Sturm-Liouville system. For such a system we shall take l1,
l2, h1, and h2 all nonnegative, in which case we can prove the following corollary.
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Corollary All eigenvalues of a proper Sturm-Liouville system are nonnegative. Furthermore,
zero is an eigenvalue of a proper Sturm-Liouville system only when q(x) ≡ 0 and
h1 = h2 = 0.

Proof Let λ and y(x) be an eigenpair of a regular Sturm-Liouville system. Mul-
tiplication of differential equation 5.3a by y(x) and integration from x = a to x = b
gives

λ

∫ b

a

p(x)y2(x) dx =
∫ b

a

q(x)y2(x) dx−
∫ b

a

y(x)[r(x)y′(x)]′ dx

=
∫ b

a

q(x)y2(x) dx−
{

r(x)y(x)y′(x)
}b

a
+
∫ b

a

r(x)[y′(x)]2 dx.

When we solve boundary conditions 5.3b,c for y′(b) and y′(a) and substitute into
the second term on the right, we obtain

λ

∫ b

a

p(x)y2(x) dx =
∫ b

a

q(x)y2(x) dx +
∫ b

a

r(x)[y′(x)]2 dx

+
h2

l2
r(b)y2(b) +

h1

l1
r(a)y2(a).

When the Sturm-Liouville system is proper, every term on the right is nonnegative,
as is the integral on the left, and therefore λ ≥ 0. (If either l1 = 0 or l2 = 0, the
corresponding terms in the above equation are absent and the result is the same.)

Furthermore, if λ = 0 is an eigenvalue, then each of the four terms on the right
side of the above equation must vanish separately. The first requires that q(x) ≡ 0
and the second that y′(x) = 0. But the fact that y(x) is constant implies that the
last two terms can vanish only if h1 = h2 = 0.

Since eigenvalues of a proper Sturm-Liouville system must be nonnegative, we
may replace λ by λ2 in differential equation 5.3a whenever it is convenient to do so,

d

dx

[
r(x)

dy

dx

]
+ [λ2p(x)− q(x)]y = 0, a < x < b.

This often has the advantage of eliminating square roots in calculations.

Example 5.4 Expand the function f(x) = L − x in terms of normalized eigenfunctions of the
Sturm-Liouville system of Example 5.1.

Solution According to Example 5.1, eigenfunctions of the Sturm-Liouville system

are sin
(2n − 1)πx

2L
. Because

∥∥∥∥sin
(2n − 1)πx

2L

∥∥∥∥
2

=
∫ L

0

[
sin

(2n − 1)πx

2L

]2
dx =

L

2
,

normalized eigenfunctions are Xn(x) =

√
2
L

sin
(2n − 1)πx

2L
. In terms of these eigen-

functions, the generalized Fourier series for f(x) = L − x is

L − x =
∞∑

n=1

cnXn(x),
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where

cn =
∫ L

0

(L − x)

√
2
L

sin
(2n − 1)πx

2L
dx =

2
√

2L3/2

π2

[
π

2n − 1
+

2(−1)n

(2n − 1)2

]
.

Thus,

L − x =
2
√

2L3/2

π2

∞∑

n=1

[
π

2n − 1
+

2(−1)n

(2n − 1)2

]√
2
L

sin
(2n − 1)πx

2L
.

Theorem 5.2 guarantees convergence of the series to L − x for 0 < x < L. It
obviously does not converge to L − x at x = 0, but it does converge to L − x at
x = L. This follows from the facts that

∞∑

n=1

(−1)n+1

2n − 1
=

π

4
and

∞∑

n=1

1
(2n − 1)2

=
π2

8
.

Figure 5.1 shows a few partial sums of this series to illustrate convergence of the
series to L − x. It is very slow because of the term π/(2n − 1).•
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In the examples of Chapter 4, when separation of variables was applied to (ini-
tial) boundary value problems, all boundary conditions in a given problem were
either of Dirichlet type or Neumann type. These led to Fourier sine and cosine
series, series that we now know are eigenfunction expansions in terms of eigenfunc-
tions of Sturm-Liouville systems 5.1 and 5.2. We did not consider problems with
Robin conditions, but in some of the exercises, we mixed Dirichlet and Neumann
conditions. We were able to do so because of the results in Exercises 20 and 21
of Section 3.2. With our results on Sturm-Liouville systems in this section, we
will be well prepared to tackle any combination of Dirichlet, Neumann, and Robin
boundary conditions.

A proper Sturm-Liouville system that arises repeatedly in our discussions is
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d2X

dx2
+ λ2X = 0, 0 < x < L, (5.14a)

−l1X
′(0) + h1X(0) = 0, (5.14b)

l2X
′(L) + h2X(L) = 0. (5.14c)

where l1, l2, h1, and h2 are non-negative constants. (Systems 5.1 and 5.2 are special
cases of 5.14 when l1 = l2 = 0 and h1 = h2 = 0, respectively. Examples 5.1 and
5.4 contain the special case of l1 = h2 = 0 and l2 = h1 = 1.) We consider here the
most general case, in which h1h2l1l2 6= 0; special cases in which one or two of h1,
h2, l1, and l2 vanish are tabulated later. In the general case when h1h2l1l2 6= 0,
we could divide boundary condition 5.14b by either l1 or h1. This would lead to
a boundary condition with only one arbitrary constant (h1/l1 or l1/h1). Likewise,
we could divide boundary condition 5.14c by l2 or h2 and express the boundary
condition in terms of the ratio h2/l2 or l2/h2. However, when this is done, it is not
quite so transparent how to specialize the results in the cases in which one or two of
h1, h2, l1, and l2 vanish. For this reason, we prefer to leave 5.14b,c in their present
forms.

We are justified in representing the eigenvalues of system 5.14 by λ2 rather
than λ, because all eigenvalues of a proper Sturm-Liouville system are nonnegative.
A general solution of differential equation 5.14a is

X(x) = A cosλx + B sin λx, (5.15)

and when we impose boundary conditions 5.14b,c,

−l1λB + h1A = 0, (5.16a)

l2(−Aλ sin λL + Bλ cosλL) + h2(A cosλL + B sinλL) = 0. (5.16b)

We solve equation 5.16a for B = h1A/(l1λ) and substitute into 5.16b. After rear-
rangement, we obtain

tanλL =
λ

(
h1

l1
+

h2

l2

)

λ2 − h1h2

l1l2

, (5.17)

the equation that must be satisfied by λ. We denote by λn (n = 1, 2, . . .) eigen-
values of this transcendental equation, although, in fact, λ2

n are the eigenvalues of
the Sturm-Liouville system. Corresponding to these eigenvalues are orthonormal
eigenfunctions

Xn(x) =
1
N

(
cosλnx +

h1

λnl1
sin λnx

)
, (5.18a)

where

N2 =
∫ L

0

(
cosλnx +

h1

λnl1
sinλnx

)2

dx. (5.18b)

In Exercise 1, integration is shown to lead to
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2N2 =

[
1 +

(
h1

λnl1

)2
][

L +
h2/l2

λ2
n + (h2/l2)2

]
+

h1/l1
λ2

n

. (5.18c)

Of the nine possible combinations of boundary conditions at x = 0 and x = L,
we have considered only one, the most general in which none of h1, h2, l1, and l2
vanishes. Results for the remaining eight cases can be obtained from equations 5.17
and 5.18, or by similar analyses; they are tabulated in Table 5.1.

Each eigenvalue equation in Table 5.1 is unchanged if λ is replaced by −λ, so
that for every positive solution λ of the equation, −λ is also a solution. Since NXn

is invariant (up to a sign change) by the substitution of −λn for λn, it is necessary
only to consider nonnegative solutions of the eigenvalue equations. This agrees with
the fact that eigenvalues of the Sturm-Liouville system are λ2

n and that there cannot
be two linearly independent eigenfunctions corresponding to the same eigenvalue.
Table 5.1 gives the eigenvalues explicitly in only four of the nine cases. Eigenvalues
in the remaining five cases are illustrated geometrically below.

If h1h2l1l2 6= 0, eigenvalues are illustrated graphically in Figure 5.2 as points
of intersection of the curves

y = tanλL, y =
λ(h1/l1 + h2/l2)
λ2 − h1h2/(l1l2)

.

It might appear that λ = 0 is an eigenvalue in this case. However, the corollary
to Theorem 5.2 indicates that zero is an eigenvalue only when h1 = h2 = 0. This
can also be verified using conditions 5.16, which led to the eigenvalue equation (see
Exercise 3).
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Condition Condition Eigenvalue
at x = 0 at x = L Equation NXn 2N2

h1l1 6= 0 h2l2 6= 0 tanλL =
λ

(
h1

l1
+

h2

l2

)

λ2 − h1h2

l1l2

cosλnx +
h1

λnl1
sinλnx

h1/l1
λ2

n

+

[
1 +

(
h1

λnl1

)2
]

×
[
L +

h2/l2
λ2

n + (h2/l2)2

]

h1l1 6= 0 h2 = 0
(l2 = 1) tanλL =

h1

λl1

cosλn(L− x)
cosλnL

L

[
1 +

(
h1

λnl1

)2
]

+
h1/l1
λ2

n

h1l1 6= 0 l2 = 0
(h2 = 1) cotλL = − h1

λl1

sinλn(L − x)
sinλnL

L

[
1 +

(
h1

λnl1

)2
]

+
h1/l1
λ2

n

h1 = 0
(l1 = 1) h2l2 6= 0 tanλL =

h2

λl2
cosλnx L +

h2/l2
λ2

n + (h2/l2)2

h1 = 0
(l1 = 1)

h2 = 0
(l2 = 1)

sin λL = 0
λn =

nπ

L
, n = 0, 1, 2, . . .

cosλnx
L (n 6= 0)
2L (n = 0)

h1 = 0
(l1 = 1)

l2 = 0
(h2 = 1)

cosλL = 0

λn =
(2n − 1)π

2L
, n = 1, 2, . . .

cosλnx L

l1 = 0
(h1 = 1) h2l2 6= 0 cotλL = − h2

λl2
sinλnx L +

h2/l2
λ2

n + (h2/l2)2

l1 = 0
(h1 = 1)

h2 = 0
(l2 = 1)

cosλL = 0

λn =
(2n − 1)π

2L
, n = 1, 2, . . .

sinλnx L

l1 = 0
(h1 = 1)

l2 = 0
(h2 = 1)

sin λL = 0
λn =

nπ

L
, n = 1, 2, . . .

sinλnx L

Table 5.1

If h1l1 6= 0 and h2 = 0 (in which case we set l2 = 1), eigenvalues are illustrated
graphically in Figure 5.3 as points of intersection of the curves

y = tanλL, y = h1/(λl1).

A similar situation arises when h2l2 6= 0 and h1 = 0.
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If h1l1 6= 0 and l2 = 0 (in which case we set h2 = 1), eigenvalues are illustrated
graphically in Figure 5.4 as points of intersection of the curves

y = cotλL, y = − h1

λl1
.

A similar situation arises when h2l2 6= 0 and l1 = 0.
Theorem 5.2 states that when a function f(x) is piecewise smooth on the in-

terval 0 ≤ x ≤ L, we may write for 0 < x < L

f(x+) + f(x-)
2

=
∞∑

n=1

cnXn(x) where cn =
∫ L

0

f(x)Xn(x) dx. (5.19)

Example 5.5 Expand the function f(x) = 2x−1, 0 ≤ x ≤ 4 in terms of orthonormal eigenfunctions
of the Sturm-Liouville system

X ′′ + λ2X = 0, 0 < x < 4,

X ′(0) = 0 = X(4).

Solution When we set L = 4 in line 6 of Table 5.1, normalized eigenfunctions of
the Sturm-Liouville system are

Xn(x) =
1√
2

cos
(2n − 1)πx

8
, n = 1, 2, . . .

For 0 < x < 4, we may write that 2x − 1 =
∞∑

n=1

cnXn(x), where

cn =
∫ 4

0

(2x − 1)Xn(x) dx

=
1√
2

{
8(2x − 1)
(2n − 1)π

sin
(2n − 1)πx

8
+

128
(2n − 1)2π2

cos
(2n − 1)πx

8

}4

0

=
−8[16 + 7(−1)n(2n − 1)π]√

2(2n − 1)2π2
.

Thus,

2x − 1 =
∞∑

n=1

−8[16 + 7(−1)n(2n − 1)π]√
2(2n − 1)2π2

1√
2

cos
(2n − 1)πx

8

= −4
√

2
π2

∞∑

n=1

16 + 7(−1)n(2n − 1)π
(2n − 1)2

1√
2

cos
(2n − 1)πx

8
, 0 < x < 4.
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Figure 5.5 shows a few partial sums of the series to illustrate convergence of the
series to 2x−1. Slowness of convergence is the result of the term 7π(−1)n/(2n−1).•
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Periodic Sturm-Liouville systems do not come under the purview of Theo-
rem 5.2. In particular, this theorem does not guarantee expansions in terms of
normalized eigenfunctions of periodic Sturm-Liouville systems. For instance, eigen-
values for the periodic Sturm-Liouville system of Example 5.2 are λn = n2π2/L2

(n = 0, 1, 2, . . .), with corresponding eigenfunctions

λ0 ↔ 1, λn ↔ sin
nπx

L
, cos

nπx

L
(n > 0).

Normalized eigenfunctions are

λ0 ↔ 1√
2L

, λn ↔ 1√
L

sin
nπx

L
,

1√
L

cos
nπx

L
(n > 0).

Theorem 5.2 does not ensure the expansion of a function f(x) in terms of these
eigenfunctions, but our theory of ordinary Fourier series does. These are precisely
the basis functions for ordinary Fourier series, except for normalizing factors, so we
may write

f(x+) + f(x-)
2

=
a0√
2L

+
∞∑

n=1

(
an

1√
L

cos
nπx

L
+ bn

1√
L

sin
nπx

L

)
, (5.20a)

where

a0 =
∫ L

−L

f(x)
(

1√
2L

)
dx, an =

∫ L

−L

f(x)
(

1√
L

cos
nπx

L

)
dx, (5.20b)

bn =
∫ L

−L

f(x)
(

1√
L

sin
nπx

L

)
dx. (5.20c)
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As a final consideration in this section, we show that the Sturm-Liouville sys-
tems in Table 5.1 arise when separation of variables is applied to (initial) boundary
value problems involving the second-order PDE

∇2V = p
∂2V

∂t2
+ q

∂V

∂t
+ sV, (5.21)

where p, q, and s are constants, t is time, and the Laplacian is expressed in Cartesian
coordinates. We consider this PDE because it includes as special cases many of those
in Chapter 2. In particular,

1. if V = V (r, t), p = s = 0, and q = k−1, then 5.21 is the one-, two-, or three-
dimensional heat conduction equation;

2. if V = V (r, t), p = ρ/τ (or ρ/E), then 5.21 is the one-, two-, or three-
dimensional wave equation;

3. if V = V (r), p = q = s = 0, then 5.21 is the one-, two-, or three-dimensional
Laplace equation.

Thus, the results obtained here are valid for heat conduction, vibration, and poten-
tial problems, problems that we discuss in detail in Chapter 6.

When PDE 5.21 is to be solved in some finite region,
boundary conditions and possibly initial conditions
are associated with the PDE. If this region is a
rectangular parallelopiped (box) in space, Cartesian
coordinates can be chosen to specify the region in
the form 0 ≤ x ≤ L, 0 ≤ y ≤ L′, 0 ≤ z ≤ L′′

(Figure 5.6). Boundary conditions must then be
specified on the six faces. Suppose, for example,

x

z

y
L

L

L

that the following homogeneous Dirichlet, Neumann, Figure 5.6
and Robin conditions accompany equation 5.21:

∇2V = p
∂2V

∂t2
+ q

∂V

∂t
+ sV, 0 < x < L, 0 < y < L′, 0 < z < L′′, t > 0,(5.22a)

V = 0, x = 0, 0 < y < L′, 0 < z < L′′, t > 0, (5.22b)
∂V

∂x
= 0, x = L, 0 < y < L′, 0 < z < L′′, t > 0, (5.22c)

−l3
∂V

∂y
+ h3V = 0, y = 0, 0 < x < L, 0 < z < L′′, t > 0, (5.22d)

V = 0, y = L′, 0 < x < L, 0 < z < L′′, t > 0, (5.22e)
∂V

∂z
= 0, z = 0, 0 < x < L, 0 < y < L′, t > 0, (5.22f)

l6
∂V

∂z
+ h6V = 0, z = L′′, 0 < x < L, 0 < y < L′, t > 0, (5.22g)

Initial conditions, if applicable. (5.22h)

If we assume that a function V (x, y, z, t) = X(x)Y (y)Z(z)T (t) with variables
separated satisfies PDE 5.22a,

X ′′Y ZT + XY ′′ZT + XY Z ′′T = pXY ZT ′′ + qXY ZT ′ + sXY ZT.

Division by XY ZT gives



SECTION 5.2 219

X ′′

X
+

Y ′′

Y
+

Z ′′

Z
=

pT ′′ + qT ′ + sT

T
,

or,

−X ′′

X
=

Y ′′

Y
+

Z ′′

Z
− pT ′′ + qT ′ + sT

T
.

The separation principle (see Section 4.1) implies that each side of this equation
must be equal to a constant, say α:

−X ′′

X
= α =

Y ′′

Y
+

Z ′′

Z
− pT ′′ + qT ′ + sT

T
. (5.23)

Thus, X(x) must satisfy the ODE X ′′ + αX = 0, 0 < x < L. When the separated
function is substituted into boundary conditions 5.22b,c,

X(0)Y (y)Z(z)T (t) = 0, X ′(L)Y (y)Z(z)T (t) = 0.

From these, X(0) = 0 = X ′(L), and hence X(x) must satisfy

X ′′ + αX = 0, 0 < x < L, (5.24a)
X(0) = 0 = X ′(L). (5.24b)

This is proper Sturm-Liouville system 5.14 with l1 = h2 = 0 and h1 = l2 = 1. When
we set α = λ2, eigenvalues λ2

n and orthonormal eigenfunctions Xn(x) are then given
in line 8 of Table 5.1

λ2
n =

(2n − 1)2π2

4L2
, Xn(x) =

√
2
L

sin
(2n − 1)πx

2L
.

Further separation of equation 5.23 gives

−Y ′′

Y
= β =

Z ′′

Z
− pT ′′ + qT ′ + sT

T
− λ2

n, (5.25)

where β is a constant. Boundary conditions 5.22d,e imply that Y (y) must satisfy

Y ′′ + βY = 0, 0 < y < L′, (5.26a)
−l3Y

′(0) + h3Y (0) = 0, (5.26b)
Y (L′) = 0. (5.26c)

This is Sturm-Liouville system 5.14 with y’s replacing x’s, with h3, l3, and L′

replacing h1, l1, and L, and with l2 = 0 and h2 = 1. When we set β = µ2, the
eigenvalue equation and orthonormal eigenfunctions are found in line 3 of Table 5.1,

cotµL′ = − h3

µl3
, NYm(y) =

1
sin µmL′ sinµm(L′ − y), 2N2 = L′

[
1 +

(
h3

µml3

)2
]

+
h3/l3
µ2

m

.

Continued separation of equation 5.25 yields

−Z ′′

Z
= γ = −pT ′′ + qT ′ + sT

T
− λ2

n − µ2
m, (5.27)

where γ is a constant. When this is combined with boundary conditions 5.22f,g,
Z(z) must satisfy the Sturm-Liouville system
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Z ′′ + γZ = 0, 0 < z < L′′, (5.28a)
Z ′(0) = 0, (5.28b)

l6Z
′(L′′) + h6Z(L′′) = 0. (5.28c)

With changes in notation, this is the Sturm-Liouville system in line 4 of Table 5.1.
Eigenvalues γ = ν2 are defined by

tan νL′′ =
h6

νl6
,

with orthonormal eigenfunctions

1
N

cos νjz where 2N2 = L′′ +
h6/l6

ν2
j + (h6/l6)2

.

The time-dependent part T (t) of V (x, y, z, t) is obtained from the ODE

pT ′′ + qT ′ + sT = −(λ2
n + µ2

m + ν2
j )T. (5.29)

In summary, separation of variables on (initial) boundary value problem 5.22
has led to the Sturm-Liouville systems in lines 3, 4, and 8 of Table 5.1. Other
choices for boundary conditions lead to the remaining five Sturm-Liouville systems
in Table 5.1 (see Exercises 30–32).

EXERCISES 5.2

1. Obtain expression 5.18c for 2N2 by direct integration of 5.18b. Hint: Show that

sinλnL =
(−1)n+1λn

(
h1

l1
+

h2

l2

)

[(
λ2

n +
h1

2

l1
2

)(
λ2

n +
h2

2

l2
2

)]1/2
, cosλnL =

(−1)n+1

(
λ2

n − h1h2

l1l2

)

[(
λ2

n +
h1

2

l1
2

)(
λ2

n +
h2

2

l2
2

)]1/2
.

2. For each Sturm-Liouville system in Table 5.1, find expressions for sin λnL and cosλnL that
involve only h1, h2, l1, l2, and/or λn. These should be tabulated and attached to Table 5.1 for
future reference.

3. Use equations 5.16 to verify that λ = 0 is an eigenvalue of Sturm-Liouville system 5.14 only
when h1 = h2 = 0.

In Exercises 4–9 express the function f(x) = x, 0 ≤ x ≤ L, in terms of orthonormal
eigenfunctions of the Sturm-Liouville system. In the first four exercises, discuss
convergence of the expansion at x = 0 and x = L.

4. X ′′ + λ2X = 0, X(0) = X(L) = 0 5. X ′′ + λ2X = 0, X ′(0) = X ′(L) = 0
6. X ′′ + λ2X = 0, X(0) = X ′(L) = 0 7. X ′′ + λ2X = 0, X ′(0) = X(L) = 0

8. X ′′ + λ2X = 0, X ′(0) = 0, l2X
′(L) + h2X(L) = 0

9. X ′′ + λ2X = 0, X(0) = 0, l2X
′(L) + h2X(L) = 0

10. Express the function f(x) = x2, 0 ≤ x ≤ L, in terms of orthonormal eigenfunctions of the
Sturm-Liouville system
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X ′′ + λ2X = 0, 0 < x < L,

X(0) = 0 = X ′(L).

Does the expansion converge to f(x) at x = 0 and x = L?
In Exercises 11–13 find eigenvalues and orthonormal eigenfunctions of the proper
Sturm-Liouville sytem.

11.
d2y

dx2
+ 2

dy

dx
+ λ2y = 0, 0 < x < L, y′(0) = 0 = y′(L)

12.
d2y

dx2
+ β

dy

dx
+ λ2y = 0, 0 < x < L, y(0) = 0 = y(L) (β 6= 0 a given constant)

13.
d2y

dx2
+ β

dy

dx
+ λ2y = 0, 0 < x < L, y′(0) = 0 = y′(L) (β 6= 0 a given constant)

14. (a) Find eigenvalues and (nonnormalized) eigenfunctions for the proper Sturm-Liouville system

y′′ + λ2y = 0, −L < x < L,

y′(−L) = 0 = y′(L).

(b) Show that eigenfunctions in part (a) can be expressed in the compact form cos
nπ(x + L)

2L
,

n = 0, 1, 2, . . ..
(c) Normalize the eigenfunctions.

15. Find normalized eigenfunctions for the Sturm-Liouville system

x2 d2y

dx2
+ x

dy

dx
+ λ2y = 0, 1 < x < L,

y(1) = 0 = y(L).

Hint: Since the differential equation is of Cauchy-Euler type, set y = xm.

16. Find normalized eigenfunctions of the Sturm-Liouville system in Exercise 15 if the boundary
conditions are (a) y′(1) = 0 = y(L) and (b) y′(1) = 0 = y′(L).

17. On the basis of Exercises 15 and 16, we might be led to believe that eigenvalues and eigenfunc-
tions of Sturm-Liouville systems associated with the differential equation in Exercise 15 on the
interval 1 < x < L, could be obtained by replacing x and L with ln x and ln L in Table 5.1.
Show that this is not always the case by finding normalized eigenfunctions of the Sturm-Liouville
system in Exercise 15 when boundary conditions are y(1) = 0 = ly′(L) + hy(L).

18. Find nonnormalized eigenfunctions of the Sturm-Liouville system in Exercise 15 if the boundary
conditions are −l1y

′(1) + h1y(1) = 0 and l2y
′(L) + h2y(L) = 0 with h1h2l1l2 6= 0.

19. Find normalized eigenfunctions of the Sturm-Liouville system of Exercise 15 when the interval
is a ≤ x ≤ b and boundary conditions are (a) y(a) = 0 = y(b), (b) y′(a) = 0 = y(b),
(c) y′(a) = 0 = y′(b), and (d) y(a) = 0 = ly′(b) + hy(b).
In Exercises 20–22 find six-figure approximations for the four smallest eigenvalues
of the Sturm-Liouville system.

20. X ′′ + λ2X = 0, 0 < x < 1, −X ′(0) + 2000X(0) = 0, X ′(1) = 0
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21. X ′′ + λ2X = 0, 0 < x < 1, X(0) = 0, 3X ′(1) + 2000X(1) = 0

22. X ′′ + λ2X = 0, 0 < x < 1, −X ′(0) + 2X(0) = 0, 2X ′(1) + X(1) = 0

23. (a) Expand the function

f(x) =
{

1, 0 < x < L/2
−1, L/2 < x < L

in terms of the normalized eigenfunctions of Sturm-Liouville system 5.2.
(b) What does the series converge to at x = L/2? Is this to be expected?
(c) What does the series converge to at x = 0 and x = L? Are these to be expected?

24. Repeat Exercise 23 with the eigenfunctions of Sturm-Liouville system 5.1.

25. In Exercise 11 of Section 5.1, we suggested two ways of interpreting the 4 in the differential
equation. Does it make a difference as far as generalized Fourier series are concerned?

26. The initial boundary value problem for transverse vibrations y(x, t) of a beam simply supported
at one end (x = L) and horizontally built in at the other end (x = 0) when gravity is negligible
compared with internal forces is

∂2y

∂t2
+ c2 ∂4y

∂x4
= 0, 0 < x < L, t > 0,

y(0, t) = yx(0, t) = 0, t > 0,

y(L, t) = yxx(L, t) = 0, t > 0,

y(x, 0) = f(x), 0 < x < L,

yt(x, 0) = g(x), 0 < x < L.

(a) Show that when y(x, t) is set equal to X(x)T (t), eigenfunctions obtained are

Xn(x) =
1

cosλnL
sin λn(L − x) − 1

coshλnL
sinhλn(L − x),

where eigenvalues λn must satisfy

tanλL = tanhλL.

(b) Prove that these eigenfunctions are orthogonal on the interval 0 ≤ x ≤ L with respect to
the weight function p(x) = 1. (Hint: Use the differential equation defining Xn(x) and a
construction like that in Theorem 5.1.)

27. Does the Sturm-Liouville system in line 6 of Table 5.1 give rise to the expansion in Exercise 21
of Section 3.2 for even and odd-harmonic functions?

28. Does the Sturm-Liouville system in line 8 of Table 5.1 give rise to the expansion in Exercise 20
of Section 3.2 for odd and odd-harmonic functions?

29. Show that the Sturm-Liouville system

d2X

dx2
+ λX = 0, 0 < x < L,

X ′(0) = 0,

l2X
′(L) − h2X(L) = 0, (l2 > 0, h2 > 0)

has exactly one negative eigenvalue. What is the corresponding eigenfunction?
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In Exercises 30–32 determine all Sturm-Liouville systems that result when separa-
tion of variables is used to solve the problem. Do not solve the problem; simply
find the Sturm-Liouville systems. Find eigenvalues (or eigenvalue equations) and
orthonormal eigenfunctions for each Sturm-Liouville system. Give a physical inter-
pretation of each problem.

30.

∂2U

∂x2
+

∂2U

∂y2
=

1
k

∂U

∂t
, 0 < x < L, 0 < y < L′, t > 0,

U(0, y, t) = 0, 0 < y < L′, t > 0,

∂U(L, y, t)
∂x

+ 200U(L, y, t) = 0, 0 < y < L′, t > 0,

∂U(x, 0, t)
∂y

= 0, 0 < x < L, t > 0,

∂U(x,L′, t)
∂y

= 0, 0 < x < L, t > 0,

U(x, y, 0) = f(x, y), 0 < x < L, 0 < y < L′.

31.
∂2y

∂t2
= c2 ∂2y

∂x2
− β

∂y

∂t
, 0 < x < L, t > 0,

−τ
∂y(0, t)

∂x
+ ky(0, t) = 0, t > 0,

y(L, t) = 0, t > 0,

y(x, 0) = f(x), 0 < x < L,

yt(x, 0) = 0, 0 < x < L.

32.
∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
= 0, 0 < x < L, 0 < y < L′, 0 < z < L′′,

V (0, y, z) = 0, 0 < y < L′, 0 < z < L′′,

∂V (L, y, z)
∂x

= 0, 0 < y < L′, 0 < z < L′′,

V (x, 0, z) = 0, 0 < x < L, 0 < z < L′′,

V (x,L′, z) = 0, 0 < x < L, 0 < z < L′′,

V (x, y, 0) = f(x, y), 0 < x < L, 0 < y < L′,

V (x, y, L′′) = 0, 0 < x < L, 0 < y < L′.

33. A fourth-order Sturm-Liouville system consists of a fourth-order, homogeneous differential equa-
tion of the following form, together with four linear, homogeneous boundary conditions for a
function y(λ, x):

d2

dx2

[
r(x)

d2y

dx2

]
+ [λp(x) − q(x)]y = 0, a < x < b,

l1(ry′′)′ + h1y = 0, x = a,

l2(ry′′) + h2y
′ = 0, x = a,

l3(ry′′)′ + h3y = 0, x = b,

l4(ry′′) + h4y
′ = 0, x = b,
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where p(x), q(x), and r′′(x) are continuous on a ≤ x ≤ b, and p > 0 and r > 0 for a ≤ x ≤ b.
Assuming that the system has eigenfunctions, show that eigenfunctions corresponding to distinct
eigenvalues are orthogonal on a ≤ x ≤ b with respect to the weight function p(x).

34. Show that when separation of variables is applied to the homogeneous beam equation 2.95
and boundary conditions corresponding to simple supports, ends built-in horizontally, and/or
cantilevered ends, the Sturm-Liouville system of Exercise 33 results.


