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§6.6 Properties of Parabolic Partial Differential Equations

We now return to a difficulty posed in Chapter 4. In what sense are the series
obtained in Chapters 4 and 6 “solutions” of their respective problems? In arriving
at each series solution, we superposed an infinity of functions satisfying a linear,
homogeneous PDE and linear, homogeneous boundary and/or initial conditions.
Because of the questionable validity of this step (superposition principle 1 in Sec-
tion 4.1 endorses only finite linear combinations), we have called each series a formal
solution. It is now incumbent on us to verify that each formal solution is indeed
a valid solution of its (initial) boundary value problem. Unfortunately, it is not
possible to prove general results that encompass all problems solved by means of
separation of variables and generalized Fourier series; on the other hand, the situa-
tion is not so bad that every problems is its own special case. Techniques exist that
verify formal solutions for large classes of problems. In this section and Sections
6.7 and 6.8, we illustrate techniques that work when separation of variables leads
to the Sturm-Liouville systems in Table 5.1. At the same time, we take the oppor-
tunity to develop properties of solutions of parabolic, hyperbolic and elliptic PDEs.
Time-dependent heat conduction problems are manifested in parabolic equations;
vibrations invariably involve hyperbolic equations; and potential problems give rise
to elliptic equations.

We choose to illustrate the situation for parabolic PDEs with the heat conduc-
tion problem in equation 6.2 of Section 6.2,

∂U

∂t
= k

∂2V

∂x2
, 0 < x < L, t > 0, (6.53a)

Ux(0, t) = 0, t > 0, (6.53b)

κ
∂U(L, t)

∂x
+ µU(L, t) = 0, t > 0, (6.53c)

U(x, 0) = f(x), 0 < x < L. (6.53d)

(See Exercise 1 for verification when both boundary conditions are Robin.) The
formal solution of problem 6.53 is

U(x, t) =
∞∑

n=1

cne−kλ2
ntXn(x) where cn =

∫ L

0

f(x)Xn(x) dx. (6.54)

Eigenfunctions are Xn(x) = N−1 cosλnx, where 2N2 = L + (µ/κ)/[λ2
n + (µ/κ)2],

and eigenvalues are defined by the equation tanλL = µ/(κλ).
We shall show by direct substitution that the function U(x, t) defined by series

6.54 does indeed satisfy problem 6.53.
When coefficients cn are calculated according to the formula in equation 6.54,

the series
∑∞

n=1 cnXn(x) converges to f(x) for 0 < x < L (provided f(x) is piecewise
smooth for 0 ≤ x ≤ L). Since this series is U(x, 0), it follows that initial condition
6.53d is satisfied if f(x) is piecewise smooth on 0 ≤ x ≤ L, provided that at any
point of discontinuity of f(x), f(x) is defined by f(x) = [f(x+) + f(x-)]/2.

To verify 6.53a–c, is not quite so simple. We first show that series 6.54 converges
for all 0 ≤ x ≤ L and t > 0 and can be differentiated with respect to either x
or t. Because eigenfunctions Xn(x) are uniformly bounded (see Theorem 5.2 in
Section 5.2), there exists a constant M such that for all n ≥ 1 and 0 ≤ x ≤ L,
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|Xn(x)| ≤ N−1 ≤ M . Further, since f(x) is piecewise continuous on 0 ≤ x ≤ L,
it is also bounded thereon; that is, |f(x)| ≤ K, for some constant K. These two
results imply that the coefficients cn defined by 6.54 are bounded by

|cn| ≤
∫ L

0

|f(x)||Xn(x)| dx ≤ KML. (6.55)

It follows that for any x in 0 ≤ x ≤ L, and any time t ≥ t0 > 0,
∞∑

n=1

|cne−kλ2
ntXn(x)| ≤ KM2L

∞∑

n=1

(e−kt0)λ2
n .

Figure 5.3 indicates that the nth eigenvalue λn ≥ (n − 1)π/L. Combine this with
the fact that e−kt0 < 1, and we may write, for 0 ≤ x ≤ L and t ≥ t0 > 0,

∞∑

n=1

|cne−kλ2
ntXn(x)| ≤ KM2L

∞∑

n=1

(e−kt0)(n−1)2π2/L2

≤ KM2L
∞∑

n=1

[(e−kt0)π2/L2
]n−1 = KM2L

∞∑

n=1

rn−1, (6.56)

and the geometric series on the right converges, since r = e−kt0π2/L2
< 1. Accord-

ing to the Weierstrass M -test (Theorem 3.3 in Section 3.3), series 6.54 converges
absolutely and uniformly with respect to x and t for 0 ≤ x ≤ L and t ≥ t0 > 0.
Because t0 > 0 is arbitrary, it also follows that series 6.54 converges absolutely for
0 ≤ x ≤ L and t > 0.

Term-by-term differentiation of series 6.54 with respect to t gives
∞∑

n=1

−kλ2
ncne−kλ2

ntXn(x). (6.57)

Since λn ≤ nπ/L (see, once again, Figure 5.3), it follows that for all 0 ≤ x ≤ L and
t ≥ t0 > 0,

∞∑

n=1

| − kλ2
ncne−kλ2

ntXn(x)| ≤ kKM2π2

L

∞∑

n=1

n2rn−1. (6.58)

Because the series
∑∞

n=1 n2rn−1 converges, we conclude that series 6.57 converges
absolutely and uniformly with respect to x and t for 0 ≤ x ≤ L and t ≥ t0 > 0. As
a result, series 6.57 represents ∂U/∂t for 0 ≤ x ≤ L and t ≥ t0 > 0. (Theorem 3.7
in Section 3.3). But, once again, the fact that t0 is arbitrary implies that we may
write

∂U

∂t
=

∞∑

n=1

−kλ2
ncne−kλ2

ntXn(x) (6.59)

for 0 ≤ x ≤ L and t > 0.
Term-by-term differentiation of series 6.54 with respect to x gives

∞∑

n=1

cne−kλ2
ntX ′

n(x) =
∞∑

n=1

cn(−λn)e−kλ2
ntN−1 sin λnx. (6.60)
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Since N−1 ≤ M , we have, for 0 ≤ x ≤ L and t ≥ t0 > 0,

∞∑

n=1

|cne−kλ2
ntX ′

n(x)| ≤
∞∑

n=1

(KML)(λnM)e−kλ2
nt0

≤ KM2L
∞∑

n=1

(nπ

L

)
rn−1 = KM2π

∞∑

n=1

nrn−1. (6.61)

Because the series
∑∞

n=1 nrn−1 converges, series 6.60 likewise converges absolutely
and uniformly. Consequently, series 6.54 may be differentiated term-by-term to
yield, for 0 ≤ x ≤ L and t > 0,

∂U

∂x
=

∞∑

n=1

cne−kλ2
ntX ′

n(x). (6.62)

A similar analysis shows that for 0 ≤ x ≤ L and t > 0,

∂2U

∂x2
=

∞∑

n=1

cne−kλ2
ntX ′′

n(x) =
∞∑

n=1

cne−kλ2
nt[−λn

2Xn(x)]. (6.63)

Expressions 6.59 and 6.63 for ∂U/∂t and ∂2U/∂x2 clearly indicate that U(x, t)
satisfies PDE 6.53a. Finally, expressions 6.62 and 6.54 for ∂U/∂x and U(x, t) indi-
cate that

∂U(0, t)
∂x

=
∞∑

n=1

cne−kλ2
ntX ′

n(0) = 0,

(since X ′
n(0) = 0), and

κ
∂U(L, t)

∂x
+ µU(L, t) = κ

∞∑

n=1

cne−kλ2
ntX ′

n(L) + µ
∞∑

n=1

cne−kλ2
ntXn(L)

=
∞∑

n=1

cne−kλ2
nt[κX ′

n(L) + µXn(L)] = 0,

(since Xn(x) satisfies κX ′
n(L) + µXn(L) = 0).

We have now verified that the formal solution U(x, t) defined by series 6.54
satisfies equations 6.53a–d. Clearly demonstrated was the dependence of our veri-
fication on properties of the Sturm-Liouville system associated with 6.53. Indeed,
indispensable were the facts that eigenvalues satisfied the inequalities (n− 1)π/L ≤
λn ≤ nπ/L and that eigenfunctions were uniformly bounded. Without a knowledge
of these properties, verification of the formal solution would have been impossible.
Although series 6.54 satisfies problem 6.53, verification of 6.54 as the solution of
the heat conduction problem described by 6.53 is not complete. To illustrate why,
consider the function defined by

U(x, t) =





∞∑

n=1

bne−kλ2
ntXn(x), 0 ≤ x ≤ L, t > 0

f(x), 0 ≤ x ≤ L, t = 0
, (6.64)
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where {bn} is a completely arbitrary, but bounded, sequence and Xn(x) are the
eigenfunctions in 6.54. The above procedure can once again be used to verify that
function 6.64 also satisfies 6.53a–c; in addition, it satisfies 6.53d. This means that, as
stated, problem 6.53 is not well posed; it does not have a unique solution. It cannot
therefore be an adequate description of the physical problem following equation
6.2 in Section 6.2 — temperature in a rod of uniform cross section and insulated
sides that at time t = 0 has temperature f(x). For time t > 0, the end x = 0
is also insulated and heat is exchanged at the other end with an environment at
temperature zero. In actual fact, 6.53 does have a unique solution, provided we
demand that the solution satisfy certain continuity conditions. Our immediate
objective, then, is to discover what these conditions are; once we find them, we can
then verify that 6.54 is the one and only solution of 6.53.

Continuity conditions for U(x, t) depend on the class of functions permitted
for f(x). To simplify discussions, suppose we permit only functions f(x) that are
continuous for 0 ≤ x ≤ L and have piecewise continuous first derivatives. Physically
this is realistic; continuity of f(x) implies that the initial temperature distribution
in the rod must be continuous. Because f ′(x) is proportional to heat flux across
cross sections of the rod, piecewise continuity of f ′(x) implies that initially there
can be no infinite surges of heat.

With f(x) continuous, it is reasonable, physically, to demaind that U(x, t) be
continuous for 0 ≤ x ≤ L and t ≥ 0. (Were f(x) assumed only piecewise continuous,
continuity of U(x, t) for t = 0 would be inappropriate.) The fact that U(x, t) must
satisfy PDE 6.53a suggests that we demand that ∂U/∂t, ∂U/∂x, and ∂2U/∂x2 all
be continuous for 0 < x < L and t > 0. Boundary conditions 6.53b,c suggest that
we require continuity of ∂U/∂x for x = 0, t > 0 and for x = L, t > 0 also. Because
there are no heat sources (or sinks) at the ends of the rod, it follows that ∂U/∂t
should be continuous at x = 0 and x = L for t > 0. For a similar reason, ∂2U/∂x2

should also be continuous at x = 0 and x = L for t > 0. We now show that these
conditions guarantee a unique solution of problem 6.53; that is, we show that (when
f(x) is continuous and f ′(x) is piecewise continuous for 0 ≤ x ≤ L) there is one and
only one solution U(x, t) of 6.53 that also satisfies

U(x, t) be continuous for 0 ≤ x ≤ L and t ≥ 0; (6.53e)
∂U

∂x
,

∂U

∂t
,

∂2U

∂x2
be continuous for 0 ≤ x ≤ L and t > 0. (6.53f)

Suppose to the contrary, that there exist two solutions U1(x, t) and U2(x, t)
satisfying 6.53a–f. The difference U(x, t) = U1(x, t) − U2(x, t) must also satisfy
6.53a,b,c,e,f, but initial condition 6.53d is replaced by the homogeneous condition
U(x, 0) = 0, 0 < x < L. To show that U1(x, t) ≡ U2(x, t), we show that U(x, t) ≡ 0.
To do this, we multiply PDE 6.53a by U(x, t) and integrate with respect to x from
x = 0 to x = L,

∫ L

0

∂U

∂t
U(x, t) dx = k

∫ L

0

∂2U

∂x2
U(x, t) dx, t > 0.

Integration by parts on the right gives, for t > 0,

0 =
∫ L

0

1
2

∂[U(x, t)]2

∂t
dx − k

{
U(x, t)

∂U

∂x

}L

0

+ k

∫ L

0

(
∂U

∂x

)2

dx
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=
1
2

∫ L

0

∂(U2)
∂t

dx − kU(L, t)
∂U(L, t)

∂x
+ kU(0, t)

∂U(0, t)
∂x

+ k

∫ L

0

(
∂U

∂x

)2

dx. (6.65)

Substitutions from boundary conditions 6.53b,c yield

0 =
1
2

∫ L

0

∂(U2)
∂t

dx + k

∫ L

0

(
∂U

∂x

)2

dx +
kµ[U(L, t)]2

κ
, t > 0. (6.66)

Because the last two terms are clearly nonnegative, we must have
∫ L

0

∂(U2)
∂t

dx =
∂

∂t

∫ L

0

[U(x, t)]2dx ≤ 0, t > 0;

that is, the definite integral of [U(x, t)]2 must be a nonincreasing function of t. But,
because U(x, t) satisfies the condition U(x, 0) = 0, 0 < x < L, the definite integral
of [U(x, t)]2 at t = 0 has value zero,

∫ L

0

[U(x, 0)]2dx = 0.

In other words, as a function of t, for t ≥ 0, the definite integral of [U(x, t)]2 is
nonnegative, is nonincreasing, and has value zero at t = 0. It must therefore be
identically equal to zero:

∫ L

0

[U(x, t)]2dx ≡ 0, t ≥ 0.

Because the integrand is continuous and nonnegative, we conclude that U(x, t) ≡ 0
for 0 ≤ x ≤ L and t ≥ 0; that is, U1(x, t) ≡ U2(x, t).

We have shown then, that for the class of initial temperature distributions
f(x) that are continuous and have piecewise continuous first derivatives, conditions
6.53e,f attached to 6.53a–d yield a problem with a unique solution; there is one
and only one solution satisfying 6.53a–f. To establish that 6.54 is the one and only
one solution of problem 6.53, we must verify that it satisfies 6.53e,f. In verifying
6.54 as a solution of 6.53a–d, we proved that series 6.59, 6.62, and 6.63 converge
uniformly for 0 ≤ x ≤ L and t ≥ t0 > 0 for arbitrary t0. This implies that ∂U/∂t,
∂U/∂x, and ∂2U/∂x2 are all continuous functions for 0 ≤ x ≤ L and t > 0 (see
Theorem 3.5 in Section 3.3). This establishes 6.53f. To verify 6.53e, we assume,
for simplicity, that f(x) satisfies the boundary conditions of the Sturm-Liouville
system associated with the problem, namely f ′(0) = 0 and κf ′(L) + µf(L) = 0. In
this case, Theorem 5.4 in Section 5.3 indicates that the generalized Fourier series∑∞

n=1 cnXn(x) of f(x) converges uniformly to f(x) for 0 ≤ x ≤ L. Because the
functions e−kλ2

nt are uniformly bounded for t ≥ 0 and for each such t, the sequence
{e−kλ2

nt} is nonincreasing, it follows by Abel’s test (Theorem 3.4 in Section 3.3)
that series 6.54 converges uniformly for 0 ≤ x ≤ L and t ≥ 0. The temperature
function U(x, t) as defined by 6.54 must therefore be continuous for 0 ≤ x ≤ L and
t ≥ 0.

Verification of 6.54 as the solution to the heat conduction problem described
by 6.53 is now complete.

An important point to notice here is that even though the initial temperature
distribution may have discontinuities in its first derivative f ′(x), the solution of
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problem 6.53 has continuous first derivatives for 0 ≤ x ≤ L and t > 0. In fact, it
has continuous derivative of all orders for 0 ≤ x ≤ L and t > 0. This means that the
heat equation immediately smooths out discontinuities of f ′(x) and its derivatives.
Even if f(x) itself were piecewise continuous, discontinuities would immediately be
smoothed out by the heat equation. We shall see that this is also true for elliptic
equations, but not for hyperbolic ones.

The method used to verify that problem 6.53a–f has a unique solution is appli-
cable to much more general problems. Consider, for example, the three-dimensional
heat conduction problem

∂U

∂t
= k∇2U +

kg(x, y, z, t)
κ

, (x, y, z) in V , t > 0, (6.67a)

U(x, y, z, t) = F (x, y, z, t), (x, y, z) on β(V ), t > 0, (6.67b)
U(x, y, z, 0) = f(x, y, z), (x, y, z) in V . (6.67c)

In Exercise 2 it is proved that there cannot be more than one solution U(x, y, z, t)
that satisfies the conditions

U(x, y, z, t) be continuous for (x, y, z) in V and t ≥ 0, (6.67d)
First partial derivatives of U(x, y, z, t) with respect to x, y, z, and t

and second partial derivatives with respect to x, y, and z be continuous for
(x, y, z) in V and t > 0, (6.67e)

where V is the closed region consisting of V and its boundary β(V ).
Heat conduction problems satisfy what are called maximum and minimum prin-

ciples. We state and prove the one-dimensional situation here; three-dimensional
principles are proved in Exercise 5. Temperature in a rod with insulated sides, when
there is no internal heat generation and when the initial temperature distribution
is f(x), must satisfy the one-dimensional heat equation

∂U

∂t
= k

∂2U

∂x2
, 0 < x < L, t > 0, (6.68a)

and the initial condition

U(x, 0) = f(x), 0 ≤ x ≤ L. (6.68b)

By taking a closed interval in 6.68b, we are assuming compatibility between the
initial temperature distribution f(x) at x = 0 and x = L and the boundary tem-
peratures when t = 0. Boundary conditions have not been enunciated because
maximum and minimum principles are independent of boundary conditions being
Dirichlet, Neumann, or Robin. Let UM be the largest of the following three numbers:

U1 = maximum value of f(x) for 0 ≤ x ≤ L,

U2 = maximum value of U(0, t) for 0 ≤ t ≤ T ,

U3 = maximum value of U(L, t) for 0 ≤ t ≤ T ,

where T is some given value of t. In other words, UM is the maximum of the initial
temperature of the rod and that found (or applied) at the ends of the rod up to
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time T . The maximum principle states that U(x, t) ≤ UM for all 0 ≤ x ≤ L
and 0 ≤ t ≤ T ; that is, at no point in the rod during the time interval 0 ≤ t ≤ T
can the temperature ever exceed UM . To prove this result, we define a function
V (x, t) = U(x, t) + εx2, 0 ≤ x ≤ L, 0 ≤ t ≤ T , where ε > 0 is a very small number.
Because U satisfies PDE 6.68a, we can say that for 0 < x < L and 0 < t < T ,

∂V

∂t
− k

∂2V

∂x2
=

∂U

∂t
− k

(
∂2U

∂x2
+ 2ε

)
= −2kε < 0. (6.69)

Assuming that U(x, t) is continuous,
so also is V (x, t), and therefore V (x, t)
must take on a maximum in the closed
rectangle A of Figure 6.10. This value
must occur either on the edge of the rec-
tangle or at an interior point (x∗, t∗). In the
latter case, V (x, t) must necessarily have a
relative maximum at (x∗, t∗), and therefore
∂V/∂t = ∂V/∂x = 0 and ∂2V/∂x2 ≤ 0 at
(x∗, t∗). But then ∂V/∂t − k∂2V/∂x2 ≥ 0

t

x

T

L

x t

A x L
t T

( * *)

:0
0

,

,

b b
b b

at (x∗, t∗), contradicting inequality 6.69. Hence, Figure 6.10
the maximum value of V must occur on the
boundary of A. It cannot occur along t = T , for, in this case, ∂V/∂t ≥ 0 at the
point and ∂2V/∂x2 would still be nonpositive. Once again, inequality 6.69 would
be violated. Consequently, the maximum value of V on A must occur on one of
the three boundaries t = 0, x = 0, or x = L. Since U ≤ UM on these three
lines, it follows that V ≤ UM + εL2 on these lines and therefore in A. But because
U(x, t) ≤ V (x, t), we can state that, in A, U(x, t) ≤ UM + εL2. Since ε can be made
arbitrarily small, it follows that UM must be the maximum value of U for 0 ≤ x ≤ L
and 0 ≤ t ≤ T .

When this result is applied to −U , the minimum principle is obtained — at
no point in the rod during the interval 0 ≤ t ≤ T can the temperature ever be less
than the minimum of the initial temperature of the rod and that found (or applied)
at the ends of the rod up to time T .

We mention one final property of heat conduction problems, which, unfortu-
nately, is not demonstrable with the series solutions of Chapters 4 and 6. (It is
illustrated for infinite rods in Case 2 of solution 11.35 in Section 11.4 and for finite
rods in solution 10.44 of Section 10.4.) When heat is added to any part of an object,
its effect is instantaneously felt throughout the whole object. For instance, suppose
that the initial temperature f(x) of the rod in problem 6.53 is identically equal to
zero, and at t = 0 a small amount of heat is added to either end of the rod or over
some cross section of the rod. Instantaneously, the temperature of every point of
the rod rises. The increase may be extremely small, but nonetheless, every point in
the rod has a positive temperature for arbitrarily small t > 0, and this is true for
arbitrarily large L. In other words, heat has been propagated infinitely fast from
the source point to all other points in the rod. This is a result of the macroscopic
derivation of the heat equation in Section 2.2. On a microscopic level, it would be
necessary to take into account the moment of inertia of the molecules transmitting
heat, and this would lead to a finite speed for propagation of heat.
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EXERCISES 6.6

1. (a) What is the formal series solution of the one-dimensional heat conduction problem

∂U

∂t
= k

∂2V

∂x2
, 0 < x < L, t > 0,

−l1
∂U

∂x
+ h1U = 0, x = 0, t > 0,

l2
∂U

∂x
+ h2U = 0, x = L, t > 0,

U(x, 0) = f(x), 0 < x < L?

(b) Use a technique similar to verification of formal solution 6.54 for problem 6.53 to verify
that the formal solution in part (a) satisfies the four equations there when f(x) is piecewise
smooth on 0 ≤ x ≤ L.

(c) Assuming further that f(x) is continuous on 0 ≤ x ≤ L, show that there is one and only
one solution of the problem in part (a) that also satisfies continuity conditions 6.53e,f.

(d) Verify that the formal solution in part (a) satisfies 6.53e,f when f(x) satisfies the boundary
conditions of the associated Sturm-Liouville system.

2. Use Green’s first identity (see Appendix C) to verify that there cannot be more than one solution
to problem 6.67.

3. Repeat Exercise 2 if the boundary condition on β(V ) is of Robin type.

4. Can you repeat Exercise 2 if the boundary condition on β(V ) is of Neumann type?

5. In this exercise we prove three-dimensional maximum and minimum principles. Let U(x, y, z, t)
be the continuous solution of the homogeneous three-dimensional heat conduction equation in
some open region V ,

∂U

∂t
= k∇2U, (x, y, z) in V , t > 0,

which also satisfies the initial condition

U(x, y, z, 0) = f(x, y, z), (x, y, z) in V ,

where V is the closed region consisting of V and its boundary β(V ). Let UM be the maximum
value of f(x, y, z) and the value of U on β(V ) for 0 ≤ t ≤ T , T some given time.
(a) Define a function W (x, y, z, t) = U(x, y, z, t) + ε(x2 + y2 + z2), where ε > 0 is a very small

number. Show that
∂W

∂t
− k∇2W < 0

for (x, y, z) in V and 0 < t < T , and use this fact to verify that W cannot have a relative
maximum for a point (x, y, z) in V and a time 0 < t < T .

(b) Prove the maximum principle that U(x, y, z, t) ≤ UM for (x, y, z) in V and 0 ≤ t ≤ T .
(c) What is the minimum principle for this situation?


