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CHAPTER 9 PROBLEMS IN POLAR, CYLINDRICAL
AND SPHERICAL COORDINATES

89.1 Homogeneous Problems in Polar, Cylindrical, and Spherical Coordinates

Example 9.1

In Section 6.3, separation of variables was used to solve homogeneous boundary
value problems expressed in polar coordinates. With the results of Chapter 8, we
are in a position to tackle boundary value problems in cylindrical and spherical
coordinates and initial boundary value problems in all three coordinate systems.
Homogeneous problems are discussed in this section; nonhomogeneous problems
are discussed in Section 9.2.

We begin with the following heat conduction problem.

An infinitely long cylinder of radius a is initially at temperature f(r) = a? — 2,

and for time ¢ > 0, the boundary r = «a is insulated. Find the temperature in the
cylinder for ¢ > 0.

Solution  With the initial temperature a function of r and the surface of the
cylinder insulated, temperature in the cylinder is a function U(r,t) of r and ¢ only.
It satisfies the initial boundary value problem

ou 0*U 10U
514(?4‘;5), O<r<a, t>0, (91&)
oU(a,t)
5 =0, >0, (9.1b)
U(r,0) =a®> -7 0<r<a. (9.1¢)

When a function U(r,t) = R(r)T(t) with variables separated is substituted into the
PDE, and the equation is divided by kRT', the result is

T/ R// R/
TR + i «a = constant independent of r and ¢.
This equation and boundary condition 9.1b yield the Sturm-Liouville system
(rR'Y —arR=0, 0<r<a, (9.2a)
R'(a) = 0. (9.2b)
This singular system was discussed in Section 8.4 (see Table 8.1 with v = 0). If we

set o = —\2, eigenvalues are defined by the equation .J;(\a) = 0, and normalized
eigenfunctions are

R, (r)= %, n > 0. (9.3)

(For simplicity of notation, we have dropped the zero subscript on Ry, and Ag,.)

The differential equation
T +kXN2T =0 (9.4)

has general solution
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T(t) = Ce Fnt, (9.5)
In order to satisfy initial condition 9.1c, we superpose separated functions and take
> 2
U(r,t) =Y Che "Ry (r), (9.6)
n=0
where the C,, are constants. Condition 9.1c requires these constants to satisfy

a® —r? = Z CpR,(r), 0<r<a. (9.7)
n=0

Thus, the C,, are coefficients in the Fourier Bessel series of a? — r2, and, according
to equation 8.62 in Section 8.4,

a \/5 a
C, = /0 r(a® — r?)Ry(r) dr = 7&]0()\”@ /0 r(a® —12)Jo(A,7) dr.

To evaluate this integral when n > 0, we set u = \,,r, in which case

V2 A /a2y 3 du
e = o (x - E) Polw)z

\/§ Ana
— NadoOa) /0 (a®*X2u — u®)Jo(u) du.

For the term involving u3, we use the reduction formula in Exercise 9 of Section 8.3,

V2 202 [ 3 Ana
Cn = m a )\n/0 UJO(U) du — {U Jl(u)}o

_ {QUQJO(u)}S"a + 4/0%@

If we recall the eigenvalue equation Ji(Aa) = 0, and equation 8.40 in Section 8.3
with v = 1, we may write

V2

uJo(u) du] .

Ana
ned
— V= | _9)2,2 212 &
Cn = N ado(ona) 2X;a*Jo(Apa) + (a5 + 4)/0 T [udy (u)] du]
—\/5 2 2 212 Ana
= NadoOud) [—2)\na Jo(Ana) + (a“AZ +4){uJ1(u)}0 }
—2v2a
pu— A% .

When n = 0, the eigenfunction is Ry(r) = v/2/a, and

a D) 2,.2 4N @ 9 3
Co= / r(a2 — T‘Q)Ro(’r‘) dr = £ {_a " T—} — \/;a
0 0

a 2 4

The solution of problem 9.1 is therefore
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V2a® (V2 = —2v2a 02,V 2d0( M)
1) = 4 a + Z 2 ¢ aJo(Ana)
n=1 n n
. CL_2 _ = Eikkit J0(>\n7') (9 8)
2 — A Jo(Ana) '

Notice that for large ¢, the limit of this solution is a?/2, and this is the average
value of a? — r2 over the circle r < a.e

In the following heat conduction problem, we add angular dependence to the
temperature function.

An infinitely long rod with semicircular cross section is initially (¢ = 0) at a constant
nonzero temperature throughout. For ¢t > 0, its flat side is held at temperature 0°C
while its round side is insulated. Find temperature in the rod for ¢ > 0.

Solution Temperature in that half of the
rod for which x < 0 in Figure 9.1 is iden-
tical to that in the half for which x > 0;

no heat crosses the x = 0 plane. As a result,
the temperature function U(r, 6,t) (and it

is independent of z) must satisfy the initial
boundary value problem

Figure 9.1
ouU 0?U 10U 1 9%U m
U(r,0,t) =0, 0<r<a, t>0, (9.9Db)
Us (r, gt> —0, O<r<a, t>0, (9.9¢)
Ur(a,0,t) =0, 0<0< g >0, (9.9d)
U(r,0,0)=Up, 0<r<a, 0<6< g (9.9¢)

(In Exercise 4, the problem is solved for 0 < 6 < 7 with the condition U(r,m,t) = 0
in place of 9.9c¢.)

When a function with variables separated, U(r,0,t) = R(r)H(6)T(t), is sub-
stituted into the PDE,

RHT' = k(R'HT + v '*R'HT +r 2RH"T)
or,
H// T‘2RN TR/ ,r.2T/

T~ R + T a = constant independent of r, 8, and .

When boundary conditions 9.9b,c are imposed on the separated function, a Sturm-
Liouville system in H(#) results,

H'+aH =0, 0<6<m/2, (9.10a)
H(0)=0= H'(n/2). (9.10b)
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This system was discussed in Section 5.2. If we set a = v2, then according to Table
5.1, eigenvalues are v2, = (2m—1)? (m = 1,2,...), with orthonormal eigenfunctions

H,(6) = % sin (2m — 1)0. 9.11)

Continued separation of the equation in R(r) and T'(t) gives

R// —1 R/ 2 T!
+ — V—TQ” =T = 0 = constant independent of r and ¢.
r
Boundary condition 9.9d leads to the Sturm-Liouville system
(2m —1)2
T

(rR")' + |-pr — R=0, 0<r<a, (9.12a)
R'(a) = 0. (9.12b)

This is singular Sturm-Liouville system 8.46 of Section 8.4. If we set 3 = —\2,

eigenvalues \,,,, are defined by the equation
Jh1(Xa) =0 (9.13)

with corresponding eigenfunctions

R () = 5 om 1 ), (9.14a)
where
IN? = g2 [1 - <2;” _a1>2] [om—1(Amna)]?. (9.14b)
The differential equation
T = —kX2,, T (9.15)
has general solution
T(t) = Ce * mnt. (9.16)

To satisfy initial condition 9.9e, we superpose separated functions and take

U(r,0,t) Z ZCmne BNt Ry (1) Ho (6), (9.17)

m=1n=1

where C,,,, are constants. The initial condition requires these constants to satisfy

=3 Y ComBun(n)Hp(0), 0<r<a, 0<0<m/2.  (9.18)

m=1n=1

If we multiply this equation by H;(6) and integrate with respect to 6 from 6 = 0 to
0 = 7/2, orthogonality of the eigenfunctions H,,(0) gives
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[oe} ﬂ—/
> CinRin(r) = / UoH;(0) df = Uo/ —=sin (2i = 1)0 df
n=1 0
2U) -1 2Uy
2i —1)0 — .
\F{%—IC%( >}0 RN
But this equation implies that the Cj,, are Fourier Bessel coefficients for the function

2Uy/[(2i — 1)+/7]; that is,

[ 2Uy
Cin _/0 i l)ﬁTRm(r) dr.

Thus, the solution of problem 9.9 for 0 < 6 < 7/2 is 9.17, where

Crn = r)dr. (9.19)

0 a
oy, T

For an angle 6 between 7/2 and 7, we should evaluate U(r,m — 6,t). Since

Hy(r — 0) = % sin (2m — 1)(r — 0) = % sin (2m — 1)0),

it follows that U(r,m—6,t) = U(r,0,t). Hence, solution 9.17 is valid for 0 < 6 < 7.e

Our next example is a vibration problem.

Example 9.3 Solve the initial boundary value problem

%: 2<% %%ﬂ%%), 0<r<a, -—-m<60<m t>0,(9.20a)
2(a,0,t) =0, —-w<f6<m t>0, (9.20b)
2(r,0,0) = f(r,0), 0<r<a, —-w<6<m, (9.20¢)
2¢(r,0,0) =0, 0<r<a, —-w<0<m. (9.20d)

Described is a membrane stretched over the circle r < a that has an initial displace-
ment f(r,0) and zero initial velocity. Boundary condition 9.20b states that the edge
of the membrane is fixed on the zy-plane.

Solution  When a separated function z(r,0,t) = R(r)H(0)T(t), is substituted
into the PDE,

RHT" = (R"HT +r 'R'HT +r *RH"T)
or,

H// ) R// + TflR/ T//
—_—— =7 -
H R c2T

> = « = constant independent of r, #, and ¢.

Since the solution and its first derivative with respect to 8 must be 27-periodic in
6, it follows that H(#) must satisfy the periodic Sturm-Liouville system

H'+aH =0, —-w<6<m, (9.21a)

H(—m) = H(n), (9.21b)

H'(—7) = H'(n). (9.21¢)
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This system was discussed in Chapter 5 (Example 5.2 and equation 5.20). Eigen-
values are o = m?, m a nonnegative integer, with orthonormal eigenfunctions

1 1 1
—sinmf, —=cosmf. (9.22)

Vor' m NG
Continued separation of the equation in R(r) and T'(t) gives
R// + T'_lR/ m2 T//
R 2T
When boundary condition 9.20b is imposed on the separated function, a Sturm-
Liouville system in R(r) results,

= 3 = constant independent of r and t.

(rR") + <—ﬁr — m72> R=0, 0<r<a, (9.23a)

R(a) = 0. (9.23b)

This is, once again, singular system 8.46 in Section 8.4. If we set 3 = —\2, eigen-
values \,,, are defined by

Jm(Aa) =0, (9.24)

with corresponding orthonormal eigenfunctions

(see Table 8.1). The differential equation
T+ XN, T=0 (9.26)
has general solution
T(t) = dcoscAppt + bsin cAyt, (9.27)

where d and b are constants. Initial condition 9.20d implies that b = 0, and hence
T(t) = dcoscApnt. (9.28)

In order to satisfy the final initial condition 9.20c, we superpose separated functions
and take

o0

Ron(’r‘)
z(r,0,t) = Z don, COs CAgpt
—_ V2T

g cosmb sin mo

where d,,, and f,,, are constants. Condition 9.20c requires these constants to
satisfy

m=1n=1

R Ron(r) = — cos mb sin mé
Fr,0) =" don Nor + 3> Ron(r) (dmn—ﬁ + fmn—ﬁ ) (9.30)
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for 0 < r <a, —m < 6 < m. If we multiply this equation by (1/y/7)cosif and

integrate with respect to 6 from 6 = —m to 6 = 7, orthogonality of the eigenfunctions
in 0 gives
T cosif
. f(ra ) \/, df = Z dmRm )

n=1

Multiplication of this equation by 7R;;(r) and integration with respect to r from
r =0 to r = a yields (because of orthogonality of the R;; for fixed i)

// rf(r,0) chfj_wdﬁdr dij;

that is
Tore cos mb
d n—/ / rRypn———f(r,0) drdf. 9.31a
| R S p ) (9.312)
Similarly,
f n:/ / r R S 10 e d), (9.31h)
—7J 0 ﬁ
and

T a f(r7 0)
don = Ron, dr de. 9.31
0 /—n/o i o r ( c)

The solution of problem 9.20 is therefore 9.29, where d,,, and f,,, are defined by
9.31.e

Coefficients d,,, and f,,, in this example were calculated by first using or-
thogonality of the trigonometric eigenfunctions and then using orthogonality of the
Ryn (7). An alternative procedure is to determine the multi-dimensional eigenfunc-
tions for problem 9.20. This approach is discussed in Exercise 27.

Our final example on separation is a potential problem.
Find the potential interior to a sphere when the potential is f(¢, ) on the sphere.
Solution The boundary value problem for the potential V' (r, ¢,0) is

o’V 20V 1 0 ov 1 0%V
or? +;E+r25in¢>8_¢ <Sm¢8¢> +7"QSin2¢>W =0

O<r<a, O0<o<m -w<O<m, (9.32a)
Via,0,0) = f(¢,0), 0<o¢p<m, —-mw<0<m. (9.32b)

When a function with variables separated, V (r, ¢,6) = R(r)®(¢)H (), is substituted
into PDE 9.32a,

1 RO®H"
R'®H + R'CPH —i— R®H)+ ——5— =0
ing ¢ (Sm ¢ )+ r2sin® ¢
or,
R" 2R/ 1 d H”
2 1.2 s av - (I) =
rosin” ¢ R * rR +T251n¢><1>d¢(smd) )| = H

= « = constant independent of r, ¢, and 6.



<

360 SECTION 9.1

Because V (r, ¢, ) must be 27-periodic in 6, as must its first derivative with respect
to 0, it follows that H(f) must satisfy the periodic Sturm-Liouville system

H'+aH =0, —-w<6<m, (9.33a)
H(—m) = H(n), (9.33b)
H'(—7) = H'(n). (9.33¢)

This is Sturm-Liouville system 9.21 with eigenvalues @ = m? and orthonormal
eigenfunctions

1 1
—— cosmd, —— sinmd.

Vo’ f VT
Continued separation of the equation in R(r) and ®(¢) gives
R’ 2rR m? 1 d

7 + R s’y Tsngds — (sin¢ ®') = 3 = constant independent of r and ¢.

Thus, ®(¢) must satisfy the singular Sturm-Liouville system

2
%<sm¢d::[;>+<ﬂsin¢—s?:l¢>¢)—0, 0< <. (9.34)

According to the results of Section 8.6, eigenvalues are 3 = n(n + 1), where n > m
is an integer, with orthonormal eigenfunctions

(2n+1)(n —m)!
() \/ TRy (cos ) (9.35)
The remaining differential equation
R’ 4+2rR' —n(n+1)R=0 (9.36)

is a Cauchy-Euler equation that can be solved by setting R(r) = r*, s an unknown
constant. This results in the general solution

C
R(r) = —5 + Ar™. (9.37)

For R(r) to remain bounded as r approaches zero, we must set C' = 0. Superposition
of separated functions now yields

7’ ¢7 Z AOnT q)On(d))

> n smb Si 0
+ 2:: 3" Py (0) <Amn% + an%>, (9.38)

where A,,, and B,,, are constants. Boundary condition 9.32b requires these con-
stants to satisfy

oo

1
Z 27TAOna q>0n(¢))

+ Z 3 "B p(0) (Amn% + an¥> (9.39)

m=1n=m
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for 0 < ¢ <m, —w < 6 < 7. Because of orthogonality of eigenfunctions in ¢ and 6,
multiplication by (1/v27)sin ¢ ®¢;(¢) and integration with respect to ¢ and 6 give

/ / f(®,0) smqﬁi)oj(d)) do db. (9.40a)
Similarly,
1 [ (7 cosmb .
A== [ | 10,0 sin g, (0) do o, (9.40b)
1 ™ ™ M 0
By = — /_ y) f(¢>,9)8“\1/? Sin ¢ B o, () dep 6. (9.40c)

Notice that the potential at the centre of the sphere is

V(0,,0) = \/12—7TA00 oo [ / F(6.0) <= sin Do (6) do 00| Bun ().

Since ®go(¢) = 1/v2,

V.00 = - [ [ fo0)sinoasa

1 s s
== /_ /O f(6,0)a?sin ¢ do db,

and this is the average value of f(¢,0) over the surface of the sphere. We can
develop an integral formula for the solution analogous to Poisson’s integral formula
for a circle, equation 6.34. We change variables of integration for the coefficients to
« and 3, substitute the coefficients into summation 9.38 and interchange orders of
integration and summation

Vo= [ [ [% )" F(@,5)sin 0 B (6)Pon ()

#2305 (5) (0, 8) 5By (6) By () (cosm cos m + sinmsin ) | d do
m=1n=1
_ 1 ) fla,B)sina [1 Z (2)71 Do (¢) Pon (@)

T 2
0 n=0

+3 Y (g)" i () Py () cOsm (6 — ﬁ>] df do.
m=1n=1
Let us define

S(r,¢,0) = %i <£>nq’0n ¢)Pon () + Z Z ( ) O) P () cosm(0 — 3).
n=0

m=1n=1

Consider the potential at a point inside the sphere and on the z-axis with spherical
coordinates (r,0,6), where 6 is arbitrary and 0 < r < a. For such a point,

S(r,0,0) = %i <£>nq)0n )Pon () + Z Z ( ) 0)® () cosm(0 — ).

n=0
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Since

Dy, (0) =

2 1 2 1 2 1 — !
n+ P.(1) = n+ (0 _\/(n+ )(n—m) Pon(1) = 0,

2(n+m)!

S(r,0,0) = %nf:o <£)n <2n2+ 1) P,(cosa) = ii(szr 1) <£>nPn(cosa).

To find a closed value for this summation, we differentiate the generating function
8.72 for Legendre polynomials

\/1—2xt+t2 Z

with respect to t,

(1 — 2zt +t2)3/2 ZnP e

If we multiply this by 2¢ and add it to the generating function, we obtain

> 2t (x — t) 1 11—t
20 + 1) P (2)t" = _ '
nzo( ) (2wt + 1292 ' T—oat 1 (1—2at+12)372
It follows that
-2
S(TOH)Z1 S — a(a® —r?)
Y 4 orcosa 12\ %2 4(a? — 2ar cosa + 1r2)3/2"
1— _
(12 5)
Thus,
a(a® ~r?) |
V(r,0,0) = / / 1a? 2arcona + 742)3/2]‘“(04,@ sinadf da

,3) sin a

a(a® —r?
— dBdo.
/ /7T —2arcosa+r2)3/2 B da

This is the potential at a point (r,0,60) on the z-axis. The distance between this
point and a point (a,«, 3) on the sphere is

V(asinacos 3)2 + (asinasin 8)2 + (acosa — r)2 = /12 + a2 — 2ar cos a.

The denominator in the above integral is therefore the cube of the distance from
points on the sphere to the point at which the potential is calculated. Since the
axes could always be rotated so that the observation point is on the z-axis, it follows
that to find the potential at any point with spherical coordinates (r, ¢, ) inside the
sphere, we need only replace v/72 + a2 — 2ar cosa with the distance from (r, ¢, )
to (a,a, 3), namely,

V/ (rsin ¢ cos — asin acos )2 + (rsin ¢ sin @ — asin asin 3)2 4 (r cos ¢ — a cos )2

= /72 + a2 — 2ar[sin ¢sin a cos (§ — B) + cos ¢ cos a].
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Thus,

a(a® —r fla, ) sina

Vir,g,0) = ——= dBda.

2) T T
4 /0 _x {r?2 + a? — 2ar[sin ¢sin acos (0 — 3) + cos ¢ cos a }3/2
(9.41)

This is called Poisson’s integral formula for a sphere.e

EXERCISES 9.1

Part A Heat Conduction

. (a) The initial temperature of an infinitely long cylinder of radius a is f(r). If, for time ¢ > 0,

the outer surface is held at 0°C, find the temperature in the cylinder.
(b) Simplify the solution in part (a) when f(r) is a constant Uy.
(c) Find the solution when f(r) = a? — r2.

. An infinitely long cylinder of radius a is initially at temperature f(r) and, for time ¢ > 0, the

boundary r = a is insulated.
(a) Find the temperature U(r,t) in the cylinder.
(b) What is the limit of U(r,t) for large ¢?

A thin circular plate of radius a is insulated top and bottom. At time ¢t = 0 its temperature is
f(r,6). If the temperature of its edge is held at 0°C for ¢t > 0, find its interior temperature for
t>0.

Solve Example 9.2 using the boundary condition U(r,m,t) = 0 in place of OU (r,7/2,t)/00 = 0.

. An infinitely long cylinder is bounded by the surfaces r = a, § = 0, and § = 7/2. At time

t = 0, its temperature is f(r,0), and for ¢ > 0, all surfaces are held at temperature zero. Find
temperature in the cylinder.

Repeat Exercise 5 if the flat sides are insulated.

7. Repeat Exercise 5 if the curved side is insulated.

10.

11.
12.

Repeat Exercise 5 if all sides are insulated. Show that the limit of the temperature as ¢ — oo
is the average of f(r,0) over the cylinder.

A flat plate in the form of a sector of a circle of radius 1 and angle « is insulated top and
bottom. At time ¢ = 0, the temperature of the plate increases linearly from 0°C at r = 0 to
a constant value U°C at » = 1 (and is therefore independent of 6). If, for ¢ > 0, the rounded
edge is insulated and the straight edges are held at temperature 0°C, find the temperature in
the plate for ¢ > 0. Prove that heat never crosses the line § = a/2.

Find the temperature in the plate of Exercise 9 if the initial temperature is f(r), the straight
sides are insulated, and the curved edge is held at temperature 0°C.

Repeat Exercise 10 if the initial temperature is a function of r and 6, namely, f(r,@).

A cylinder occupies the region r < a, 0 < z < L. It has temperature f(r,z) at time ¢ = 0. For
t > 0, its end z = 0 is insulated, and the remaining two surfaces are held at temperature 0°C.
Find the temperature in the cylinder.
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. Solve Exercise 1(a),(b) if heat is transferred at r = a according to Newton’s law of cooling to
an environment at temperature zero.

. (a) A sphere of radius a is initially at temperature f(r) and, for time ¢ > 0, the boundary r = a
is held at temperature zero. Find the temperature in the sphere for ¢ > 0. (You will need
the results of Exercise 8 in Section 8.4). Compare the solution to that in Exercise 12 of
Section 4.2.

(b) Simplify the solution when f(r) = Uy, a constant.

(c) Suppose the sphere has radius 20 cm and is made of steel with k& = 12.4 x 1075, Find the
temperature at the centre of the sphere after 10 minutes when f(r) = Uy as in part (b).

(d) Repeat part (c) if the sphere is asbestos with k = 0.247 x 1076,

. Repeat parts (a) and (b) of Exercise 14 if the surface of the sphere is insulated. (See Exercise
8 in Section 8.4.) What is the temperature for large ¢?

. Repeat parts (a) and (b) of Exercise 14 if the surface transfers heat to an environment at
temperature zero according to Newton’s law of cooling; that is, take as boundary condition
oU(a,t)

—_— t) = t .
g +pU(a,t) =0, t>0

(Assume that pa < r and see Exercise 8 in Section 8.4.)

. Repeat Exercise 14(a) if the initial temperature is also a function of ¢. (You will need the
results of Exercise 9 in Section 8.4.)

. (a) Repeat Exercise 14(a) if the initial temperature is also a function of ¢ and the surface of
the sphere is insulated. (You will need the results of Exercise 9 in Section 8.4.)
(b) What is the limit of the solution for large ¢?

. The result of this exercise is analogous to that in Exercise 9 of Section 6.4. Show that the
solution of the homogeneous heat conduction problem

2 2
8U_k<8U Loy 8U>, O<r<a, O<z<L, t>0,

ot o or 922
—l1%—g+h1U=0, z=0, 0<r<a, t>0,
lg%—g%—th:(), z=L, 0<r<a, t>0,
lgaa—g%—th:O, r=a, 0<z<L, t>0,

U(r,z,0) = f(r)g(z), 0<r<a, 0<z<L,

where the initial temperature is the product of a function of r and a function of z, is the product
of the solutions of the problems

8—U—k 82U+18—U O<r<a, t>0
ot or2  ror)’ ’ ’
t
LY@ et =0, >0,

or
U(r,0) = f(r), 0<r<a;

and



20.

21.

22.

23.
24.
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ou 0*U
E—kﬁ, O<Z<L, t>0,
t
L 8U8(2, ) U8 =0, t>0,
L
lg% + hQU(L,t) =0, t>0,

U(z,0)

g(z), 0<z<L.

Solve the heat conduction problem

v (U LU o
ot or?2  r Or 072

), O<r<a, 0O0<z<L, t>0,

U,(r,0,t) =0, 0<r<a, t>0,

U(r,L,t) =0, 0<r<a, t>0,

U-(a,z,t) =0, 0<z<L, t>0,
)

U(r,z,0)=(a®> =) (L—2), 0<r<a, 0<z<L,

(a) by using the results of Exercise 19, Example 9.1, and Exercise 1(a) in Section 6.2.
(b) by separation of variables.

Part B Vibrations

(a) A vibrating circular membrane of radius a is given an initial displacement that is a func-
tion only of r, namely, f(r), 0 < r < a, and zero initial velocity. Show that subsequent
displacements of the membrane, if its edge r = a is fixed on the xy-plane, are of the form

z(r t) = g Z A, cosept Jo(Anr) .
n=1

Jl ()\na)

What is A,,7
(b) The first term in the series in part (a), called the fundamental mode of vibration for
the membrane, is
V2 Jo(A1r)
H t)=—A SCA t———.
1(r,t) - 1 COS A1 T 0w
Simplify and describe this mode when a = 1. Does H;(r,t) have nodal curves?
(c) Repeat part (b) for the second mode of vibration.
(d) Are frequencies of higher modes of vibration integer multiples of the frequency of the fun-
damental mode? Were they for a vibrating string with fixed ends?

A circular membrane of radius a has its edge fixed on the zy-plane. In addition, a clamp holds
the membrane on the zy-plane along a radial line from the centre to the circumference. If the
membrane is released from rest at a displacement f(r,0), find subsequent displacements. (For
consistency, we require f(r,6) to vanish along the clamped radial line.)

Simplify the solution in part (a) of Exercise 21 when f(r) = a® — r%. (See Example 9.1.)

A circular membrane of radius a is parallel to the zy-plane and is falling with constant speed
vg. At time ¢t = 0, it strikes the zy-plane. For ¢ > 0, the edge of the membrane is fixed on the
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xy-plane, but the remainder of the membrane is free to vibrate vertically. Find displacements
of the membrane.

Equation 9.29 with coefficients defined in 9.31 describes displacements of a circular membrane
with fixed edge when oscillations are initiated from rest at some prescribed displacement. In
this exercise we examine nodal curves for various modes of vibration.

(a) The first mode of vibration is the term (dg; /v/27)Ro1 (r) cos cAo1t. Show that this mode has
no nodal curves.

(b) Show that the mode (doz/v/2m)Roz(r) cos Azt has one nodal curve, a circle.

(c) Show that the mode (dos/+/27)Ros () cos chpst has two circular nodal curves.

(d) On the basis of parts (a), (b), and (c¢), what are the nodal curves for the mode
(don/V/27) Rop (1) cos cAgnt?

(e) Corresponding to n = m = 1, there are two modes, (d11/v/m)R11(r)coscAi1tcosf and
(f11/+v/7)R11(r) coscAiitsinf. Show that each of these modes has only one nodal curve, a
straight line.

(f) Find nodal curves for the modes (d12/+/7)R12(r) cos cAiat cosf and
(fi2/v/m)R12(r) cos cAat sinb.

(g) Find nodal curves for the modes (daa//7)Raa(r) cos cAaat cos 26 and
(fa2/+/T)Raa(r) cos cAgat sin 26.

(h) On the basis of parts (e), (f), and (g), what are the nodal curves for the modes
(dimn/ /) Rin (1) €08 e Ayt cosm@ and ( frun //T) Ripn (1) €08 Ayt sSin mo?

The initial boundary value problem for small horizontal displacements of a suspended cable
when gravity is the only force acting on the cable is

0%y 0 < Oy
x_

- ), O<z<L, t>0,
ox

oz~ Jor
y(L,t) =0, t>0,
y(z,0) = f(z), 0<z<L,
ye(x,0) = h(z), 0<x<L.

(See Exercise 26 in Section 2.3.)
(a) Show that when a new independent variable z = /4x/g is introduced, y(z,t) must satisfy

%y 190 oy
32 = 20 <a_
y(M,t) =0, t>0,
y(2,0) = f(g*/4), 0<z<M,
yi(2,0) = h(gz?/4), 0<z< M,

), 0<z< M, t>0,

where M = \/4L/g.

(b) Solve this problem by separation of variables, and hence find y(z,t).

Multidimensional eigenfunctions for problem 9.20 are solutions of the two-dimensional eigen-
value problem

PW 10w 1 PW |,
29w 1 _ _ <
8T2+T87’+T2 002 TAW =0, 0<r<a, T<f<m,

W(a,0) =0, —m<0<m.
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(a) Find eigenfunctions (normalized with respect to the unit weight function over the circle
r <a).
(b) Use the eigenfunctions in part (a) to solve problem 9.20.

Part C Potential, Steady-state Heat Conduction, Static Deflections of Mem-
branes

(a) Solve the following boundary value problem associated with the Helmholtz equation on a
circle

VXV +EV =0, 0<r<a, —-m<6<nm (k>0 aconstant)
Via,0) = f(0), —-w<6<m.

(b) Is V(0,0) the average value of f(#) on r = a?
(c) What is the solution when f(0) =17

Solve the following problem for potential in a cylinder

0?V 19V 9V

e , O0<r<a, 0<z<L,

Find the potential inside a cylinder of length L and radius a when potential on the curved
surface is zero and potentials on the flat ends are nonzero.

(a) Find the steady-state temperature in a cylinder of radius a and length L if the end z = 0
is maintained at temperature f(r), the end z = L is kept at temperature zero, and heat is
transferred on 7 = a to a medium at temperature zero according to Newton’s law of cooling.

(b) Simplify the solution when f(r) = Uy, a constant.

The temperature in a semi-infinite cylinder 0 < r < a, z > 0 is in a steady-state situation. Find
the temperature if the cylindrical wall is at temperature zero and the temperature of the base

z=01is f(r).
Repeat Exercise 32 if the cylindrical wall is insulated.

Use separation of variables to find the potential inside a sphere of radius a when the potential
on the sphere is a function f(¢) of ¢ only. Does the solution for Example 9.4 specialize to this
result? What is the solution when f(¢) is a constant function?

Show that if the potential on the surface of a sphere is a function f(€) of 6 only, the potential
interior to the sphere is still a function of r, ¢, and 6.

Find the potential interior to a sphere of radius a when the potential must satisfy a Neumann
condition on the sphere,

oV (a,¢,0)

= << — < .
or f(¢,0), 0<¢<m, T<O0<m

Find the potential interior to a sphere of radius a when the potential must satisfy a Robin
condition on the sphere,
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OV (,6.0)

or +hV(a7¢79):f(¢,0), OS¢SW7 _7T<0§7T.

Find the steady-state temperature inside a hemisphere » < a, z > 0 when temperature on z = 0
is zero and that on r = a is a function of ¢ only. (Hint: See Exercise 5 in Section 8.6.) Simplify
the solution when f(¢) is a constant function.

Repeat Exercise 38 if the base of the hemisphere is insulated. (Hint: See Exercise 6 in Section
8.6.)

Find the bounded potential outside the hemisphere r < a, z > 0 when potential on z = 0 is
zero and that on r = a is a function of ¢ only. (Hint: See the results of Exercise 5 in Section
8.6.)

Find the potential interior to a sphere of radius a when the potential on the upper half is a
constant V and the potential on the lower half is zero.

Use the result of Exercise 41 to find the potential inside a sphere of radius a when potentials
on the top and bottom halves are constant values Vj and Vi, respectively.

Find the potential in the region between two concentric spheres when the potential on each

sphere is

(a) a constant;

(b) a function of ¢ only (and show that the solution reduces to that in part (a) when the
functions are constant;

(c) a function of ¢ and 6 (and show that the solution reduces to that in part (b) when the
functions depend only on ¢.

(a) Show that the negative of Poisson’s integral formula 9.41 is the solution to Laplace’s equation
exterior to the sphere r = a if V (r, ¢,0) is required to vanish at infinity.

(b) Show that if V(r, ¢, ) is the solution to the interior problem, then (a/r)V(a?/r, ¢,0) is the
solution to the exterior problem. Do this using the result in part (a), and also by checking
that the function satisfies the boundary value problem.

(a) What is the potential interior to a sphere of radius a when its value on the sphere is a
constant V5?

(b) Determine the potential exterior to a sphere of radius a when its value on the sphere is a
constant Vj, and the potential must vanish at infinity. Do this in two ways, using separation
of variables, and the result of Exercise 44.

What is the potential exterior to a sphere of radius a when the potential must vanish at infinity
and satisfy a Neumann condition on the sphere,

9V (a,6,0)

= <0< — < .
or f(¢a9)a 0_¢_W, T<O0<nm

What is the potential exterior to a sphere of radius a when the potential must vanish at infinity
and satisfy a Robin condition on the sphere,
oVia,p,0
—l(aéé) + hV(a,0,0) = f(¢,0), 0<odp<m —m<l<m.
r
Consider the following boundary value problem for steady-state temperature inside a cylinder
of length L and radius a when the temperature of each end is zero:
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0’U 10U 0°U
422 =0. 0 0 L
8r2+r8r+822 , <r<a, <z <L,
U(r,0)=0, 0<r<a,
U(r,L)=0, 0<r<a,

Ula,z) = f(z), 0<z<L.

(a) Verify that separation of variables U(r, z) = R(r)Z(z) leads to a Sturm-Liouville system in
Z(z) and the following differential equation in R(r):

d*R dR
TW-F%—)\ rR=0, 0<r<a.
(b) Show that the change of variable x = Ar leads to Bessel’s modified differential equation of
order zero,
d’R  dR

(See Exercise 10 in Section 8.3.)

(c) Find functions R, (r) corresponding to eigenvalues \,, and use superposition to solve the
boundary value problem.

(d) Simplify the solution in part (c) in the case that f(z) is a constant value Up.

Solve the boundary value problem in Exercise 48 if the ends of the cylinder are insulated.

(a) A charge @ is distributed uniformly
around a thin ring of radius a in the
zy-plane with centre at the origin
(figure to the right). Show that potential
at every point on the z-axis due to this
charge is

s @

dregVa® +r2
(b) The potential at other points in x Y
space must be independent of the spherical coordinate . Show that V(r, ¢) must be of the

form
Vr,¢) = Z <An7’” + rfL) \/ 2n2—{— an(cosd)).

n=0

What does this result predict for potential at points on the positive z-axis?
(c) Equate expressions from parts (a) and (b) for V' on the positive z-axis and expand 1/v/a? + 12
in powers of r/a and a/r to find V(r, ¢).

Repeat Exercise 50 in the case that charge @ is distributed uniformly over a disc of radius a in
the zy-plane with centre at the origin.



