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§15.5 Method of Weighted Residuals and Dirichlet Boundary Value Problems

We now apply the MWR to boundary value problems associated with partial dif-
ferential equations, and in this section, we deal with Dirichlet problems as they
are the easiest to handle. We begin with a general discussion to outline one pos-
sible procedure, but other approaches may be advantageous, such as reduction of
dimensionality, a method that we also introduce in this section. Consider the two-
dimensional problem

L(V ) = F (x, y), (x, y) in R, (15.41a)
V (x, y) = G(x, y), (x, y) on β(R), (15.41b)

where L is some partial differential operator (which may be linear, such as the
Laplacian, or nonlinear), β(R) is the boundary of some region R in the xy-plane,
and F (x, y) and G(x, y) are given functions. For an interior method, we could take
approximations in the form

VN (x, y) = φ0(x, y) +
N∑

n=1

cnφn(x, y), (15.42)

where φ0(x, y) satisfies the nonhomogeneous boundary condition, and basis func-
tions φn(x, y) for n = 1, . . . , N satisfy the homogeneous version of the boundary
condition; that is φn(x, y) = 0 on β(R). Approximations VN (x, y) then satisfy
boundary condition 15.41b, and the resulting (equation) residual need only account
for VN (x, y) not satisfying the PDE,

R = L(VN ) − F (x, y) = L

[
φ0(x, y) +

N∑

n=1

cnφn(x, y)

]
− F (x, y)

= L(φ0) +
N∑

n=1

cnL(φn) − F (x, y). (15.43)

(This calculation has assumed that L is linear.) When N weight functions wm(x, y)
are chosen, the MWR requires

0 =
∫∫

R

[
L(φ0) +

N∑

n=1

cnL(φn)− F (x, y)

]
wm(x, y) dA, m = 1, . . . , N.

We can express these equations, which determine the cn, in the form
N∑

n=1

cn

∫∫

R

L(φn)wm dA =
∫∫

R

[F − L(φ0)]wm dA, m = 1, . . . , N.

As was the case for boundary value problems associated with ODEs, basis func-
tions must be linearly independent and from a complete set. Possible choices once
again include eigenfunctions of associated Sturm-Liouville problems, and polynomi-
als. The polynomials xnym, n,m = 0, 1, 2, . . . form a complete set for the space of
continuous functions, but in the above approach, it is unlikely that they will satisfy
the boundary condition. However, if ω(x, y) is a positive, continuously differentiable
function in R that vanishes on the boundary of R, then the functions ω(x, y)xnym
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constitute a complete set and they do satisfy the boundary condition. We use this
idea in our first example which has a simple nonhomogeneity in the differential
equation, and homogeneous boundary conditions.

Example 15.2 Find polynomial approximations to the solution of the boundary value problem

∂2V

∂x2
+
∂2V

∂y2
= k, −L < x < L, −L < y < L,

V (−L, y) = V (L, y) = 0, −L < y < L,

V (x,−L) = V (x,L) = 0, −L < x < L,

where k is a constant. Use an interior method and a boundary method. To four
decimal places, the solution of the boundary value problem at the centre of the
square is −0.2947L2k (see Exercise 32 in Section 4.3). Compare this value to that
predicted by each approximation.

Solution Interior Method
The function ω(x, y) = (L2 − x2)(L2 − y2) is positive, continuously differentiable,
and vanishes on the edges of the square. Polynomial basis functions can therefore be
taken as xnym(L2−x2)(L2−y2), n,m = 0, 1, . . .. Furthermore, because the solution
of the problem should be an even function of both x and y, and be symmetric in x
and y, we can further restrict the choices for xnym. First and second approximations
that satisfy the boundary conditions and symmetry requirements are V1(x, y) =
c(L2 − x2)(L2 − y2) and V2(x, y) = (L2 − x2)(L2 − y2)[c + d(x2 + y2)]. We work
with the second approximation. The equation residual is

R(x, y) = −2(L2 − y2)[c+ d(x2 + y2)] + 2(−2x)(L2 − y2)(2dx)
+ (L2 − x2)(L2 − y2)(2d)− 2(L2 − x2)[c+ d(x2 + y2)]
+ 2(−2y)(L2 − x2)(2dy) + (L2 − x2)(L2 − y2)(2d)− k

= −2[c+ d(x2 + y2)](2L2 − x2 − y2) − 8d[x2(L2 − y2) + y2(L2 − x2)]
+ 4d(L2 − x2)(L2 − y2) − k.

We use collocation, subdomains, and Galerkin’s method to find values for c and d.
Collocation
Due to the symmetry of the problem, we choose two collocation points in the first
quadrant part of the square, namely (0, 0) and (L/2, L/2). These yield the equations

0 = −4cL2 + 4dL4 − k, 0 = −3cL2 − 9
4
dL4 − k.

The solution is c = − 25k
84L2

and d = − k

21L4
, and therefore the second collocation

approximation is

V2(x, y) = − k

84L4
(L2 − x2)(L2 − y2)[25L2 + 4(x2 + y2)].

It predicts a value of V2(0, 0) = −25L2k/84 ≈ −0.2976L2k for the centre of the
region.
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Subdomain

We choose two symmetric subdomains, namely the square A1 : 0 ≤ x, y ≤ L/2 and
A2 as the remainder of the original square in the first quadrant. These require

0 =
∫ L/2

0

∫ L/2

0

R(x, y) dy dx = −kL
2

4
− 11cL4

12
+

31dL6

80
,

0 =
∫ L/2

0

∫ L

L/2

R(x, y) dy dx+
∫ L

L/2

∫ L

0

R(x, y) dy dx = −3kL2

4
− 7cL4

4
− 287dL6

80
.

The solution of these equations is c = − 285k
952L2

and d = − 15k
238L4

, and the second
subdomain approximation is

V2(x, y) = − 15k
952L4

(L2 − x2)(L2 − y2)[17L2 − 4(x2 + y2)].

It predicts a value of V2(0, 0) = −285kL2/952 ≈ −0.2994L2k for the centre of the
region.
Galerkin

Galerkin’s method requires

0 =
∫ L

0

∫ L

0

R(x, y)(L2 − x2)(L2 − y2) dy dx = −4kL6

9
− 64cL8

45
− 256dL10

525
,

0 =
∫ L

0

∫ L

0

R(x, y)(L2 − x2)(L2 − y2)(x2 + y2) dy dx = −8kL8

45
− 256cL10

525
− 2816dL12

4725
.

The solution of these equations is c = − 1295k
4432L2

and d = − 525k
8864L4

. The second
Galerkin approximation is therefore

V2(x) = − 5k
8864L2

(L2 − x2)(L2 − y2)
[
518L2 + 105(x2 + y2)

]
.

It predicts a value of V2(0, 0) = −1295kL2/4432 ≈ −0.2922L2k for the centre of the
region.
Boundary Method

In a boundary method, polynomial approximations must satisfy the PDE. The func-
tion k(x2 + y2)/4 satisfies the PDE. To find polynomials that satisfy the homoge-
neous version of the PDE, namely, Laplace’s equation, we use the fact that real and
imaginary parts of every complex analytic function satisfy Laplace’s equation; in
particular, real and imaginary parts of the function zn = (x+ yi)n give polynomial
solutions of Laplace’s equation. The first few, from n = 1, 2, 3, and 4 are

1, x, y, x2 − y2, xy, x3 − 3xy2, 3x2y − y3, x4 − 6x2y2 + y4, 4x3 − 4xy3, . . . .

As already noted, the solution of the problem must be even in x and y, and symmet-
ric with respect to x and y. The first two such polynomials are 1 and x4−6x2y2+y4.
We therefore take as an approximating polynomial that satisfies the PDE

V2(x, y) = c+
k

4
(x2 + y2) + d(x4 − 6x2y2 + y4).



646 SECTION 15.5

The residual of this approximation along each of the four edges of the square is
identical, and we therefore consider it along x = L,

R = c+
k

4
(L2 + y2) + d(L4 − 6L2y2 + y4).

We now use collocation, subdomains, and Galerkin’s method to determine c and d.
Collocation
Collocation with y = L/3 and y = 2L/3 requires

0 = c+
k

4

(
L2 +

L2

9

)
+ d

(
L4 − 2L4

3
+
L4

81

)
,

0 = c+
k

4

(
L2 +

4L2

9

)
+ d

(
L4 − 8L4

3
+

16L4

81

)
.

These imply that c = −37kL2/126 and d = 9k/(196L2), and the second collocation
approximation is

V2(x, y) = −37kL2

126
+
k

4
(x2 + y2) +

9k
196L2

(x4 − 6x2y2 + y4).

It predicts a value of −37kL2/126 ≈ −0.2937L2k at (0, 0).
Subdomain
Subdomains require

0 =
∫ L/2

0

[
c+

k

4
(L2 + y2) + d(L4 − 6L2y2 + y4)

]
dy =

Lc

2
+

13L3k

96
+

41L5d

160
,

0 =
∫ L

L/2

[
c+

k

4
(L2 + y2) + d(L4 − 6L2y2 + y4)

]
dy =

Lc

2
+

19L3k

96
− 169L5d

160
.

These give c = −31kL2/105 and d = k/(21L2), and the second subdomain approx-
imation is

V2(x, y) = −31kL2

105
+
k

4
(x2 + y2) +

k

21L2
(x4 − 6x2y2 + y4).

It predicts V2(0, 0) = −31kL2/105 ≈ −0.2952L2k.
Galerkin
Galerkin’s method requires

0 =
∫ L

0

[
c+

k

4
(L2 + y2) + d(L4 − 6L2y2 + y4)

]
dy = Lc+

kL3

3
− 4L5d

5
,

0 =
∫ L

0

[
c+

k

4
(L2 + y2) + d(L4 − 6L2y2 + y4)

]
(L4 − 6L2y2 + y4) dy

= −4L5

5
− 8L7k

21
+

944L9d

315
.

The solution is c = −205kL2/696 and d = 45k/(928L2), and the second Galerkin
approximation is

V2(x, y) = −205kL2

696
+
k

4
(x2 + y2) +

45k
928L2

(x4 − 6x2y2 + y4).
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Its prediction at the centre is −205kL2/696 ≈ −0.2945L2k.•

The next example has a more general nonhomogeneity in the differential equa-
tion and two nonhomogeneous boundary conditions. We also use it to introduce the
method of reduction of dimensionality.

Example 15.3 Use polynomials and eigenfunctions to approximate the solution of the boundary
value problem

∂2V

∂x2
+
∂2V

∂y2
= F (x, y), 0 < x < L, 0 < y < L′, (15.44a)

V (0, y) = V (L, y) = 0, 0 < y < L′, (15.44b)
V (x, 0) = g(x), 0 < x < L, (15.44c)
V (x,L′) = h(x), 0 < x < L. (15.44d)

For continuity of boundary conditions at the corners of the rectangle, assume that
nonhomogeneities g(x) and h(x) satisfy the conditions g(0) = g(L) = h(0) = h(L) =
0.

Solution Consider using approximations of the form

VN (x, y) = φ0(x, y) +
N∑

n=1

cnφn(x, y), (15.45)

where φ0(x, y) satisfies all boundary conditions, homogeneous and nonhomogeneous,
and basis function φn(x, y) for n = 1, . . . , N satisfy homogeneous versions of the
boundary conditions. A convenient choice for φ0(x, y) is g(x)(1− y/L′)+h(x)y/L′.
(Can you see the difficulty at this point were g(0), g(L), h(0), and/or h(L) nonzero?)
For polynomial approximations, we choose ω(x, y) = xy(L − x)(L′ − y), in which
case basis functions that satisfy homogeneous versions of the boundary conditions
are φnm(x, y) = xnym(L−x)(L′− y), n,m = 1, 2, . . .. Approximate solutions of the
problem are therefore

VN (x, y) = g(x)
(
1 − y

L′

)
+ h(x)

y

L′ +
N∑

n=1

N∑

m=1

cnmx
nym(L− x)(L′ − y). (15.46)

The first approximation is

V1(x, y) = g(x)
(
1 − y

L′

)
+ h(x)

y

L′ + c11xy(L− x)(L′ − y), (15.47)

with equation residual

R = g′′(x)
(
1 − y

L′

)
+ h′′(x)

y

L′ + 2c11(x2 − Lx+ y2 − L′y) − F (x, y).

Galerkin’s method requires

0 =
∫ L

0

∫ L′

0

[
g′′(x)

(
1 − y

L′

)
+ h′′(x)

y

L′ + 2c11(x2 − Lx+ y2 − L′y)

− F (x, y)
]
xy(L− x)(L′ − y) dy dx,
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and integrations lead to

c11 =
−90

L3L′3(L2 + L′2)

[
L′3

6

∫ L

0

g(x) dx+
L′3

6

∫ L

0

h(x) dx

+
∫ L

0

∫ L′

0

F (x, y)xy(L− x)(L′ − y) dy dx
]
.

We now consider using eigenfunctions of the associated eigenvalue problem

φnm(x, y) = sin
nπx

L
sin

mπy

L′

as basis functions. Approximations are

VNM (x, y) =
N∑

n=1

M∑

m=1

cnm sin
nπx

L
sin

mπy

L′ . (15.48)

These approximations satisfy homogeneous boundary conditions 15.44b, but not
nonhomogeneous conditions 15.44c,d. The solution is pursued when all boundary
conditions are homogeneous in Exercise 5. Nonhomogeneous conditions 15.44c,d
can be handled by transforming them into the PDE. Suppose we make a change of
dependent variable by U(x, y) = V (x, y) + φ0(x, y) where φ0(x, y) is any function
that has value g(x) along y = 0 and h(x) along y = L′. The obvious choice is
g(x)(1 − y/L′) + h(x)y/L′. With this change, the boundary value problem for
U(x, y) is

∂2U

∂x2
+
∂2U

∂y2
= F (x, y) − g′′(x)

(
1 − y

L′

)
− h′′(x)

y

L′ , 0 < x < L, 0 < y < L′,

U(0, y) = U(L, y) = 0, 0 < y < L′,

U(x, 0) = U(x,L′) = 0, 0 < x < L.

Approximations

UNM (x, y) =
N∑

n=1

M∑

m=1

cnm sin
nπx

L
sin

mπy

L′

satisfy the homogeneous boundary conditions. The equation residual is

R = −π2
N∑

n=1

M∑

m=1

cnm

(
n2

L2
+
m2

L′2

)
sin

nπx

L
sin

mπy

L′ − F (x, y)

+ g′′(x)
(
1 − y

L′

)
+ h′′(x)

y

L′ .

Galerkin’s method requires

0 =
∫ L

0

∫ L′

0

[
−π2

N∑

n=1

M∑

m=1

cnm

(
n2

L2
+
m2

L′2

)
sin

kπx

L
sin

lπy

L′ − F (x, y)

+ g′′(x)
(
1 − y

L′

)
+ h′′(x)

y

L′

]
sin

kπx

L
sin

lπy

L′ dy dx.
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Due to the orthogonality of the eigenfunctions, this immediately leads to

cnm =
−4LL′

π2(n2L′2 +m2L2)

∫ L

0

∫ L′

0

[
F (x, y) − g′′(x)

(
1 − y

L′

)
− h′′(x)

y

L′

]

∗ sin
nπx

L
sin

mπy

L′ dy dx. (15.49a)

Multiple integrations by parts on the terms involving g(x) and h(x) leads to the
alternative formula

cnm =
−4LL′

π2(n2L′2 +m2L2)

{∫ L

0

∫ L′

0

F (x, y) sin
nπx

L
sin

mπy

L′ dy dx

+
n2πL′

mL2

∫ L

0

[g(x) + (−1)m+1h(x)] sin
nπx

L
dx

}
. (15.49b)

Finally then

VNM (x, y) =
N∑

n=1

M∑

m=1

cnm sin
nπx

L
sin

mπy

L′ − g(x)
(
1 − y

L′

)
− h(x)

y

L′ .•

Reduction of Dimensionality

The MWR can be used to reduce the dimensionality of a problem; for problem
15.44, the PDE is reduced to an ODE. We represent approximations as sums of
separated functions

VN (x, y) =
N∑

n=1

φn(x, y) =
N∑

n=1

cn(y)ψn(x),

where basis functions ψn(x) must be specified, and coefficients cn(y) will be deter-
mined by the MWR. (Approximations were separated in the previous approach, but
they need not have been so.) According to Table 15.5, polynomial basis functions
satisfying boundary conditions 15.44b are ψn(x) = xn(L − x), n = 1, 2, . . .. We
therefore take approximations in the form

VN (x, y) =
N∑

n=1

cn(y)xn(L− x),

the first being

V1(x, y) = c1(y)x(L− x).

The equation residual is

R = −2c1 + x(L− x)c′′1 − F (x, y).

Galerkin’s method requires

0 =
∫ L

0

[−2c1 + x(L− x)c′′1 − F (x, y)]x(L− x) dx.

Integrations lead to
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c′′1 − 10c1
L2

=
30
L5

∫ L

0

F (x, y)x(L− x) dx.

So that the remainder of the procedure can be illustrated without unduly compli-
cated calculations, we assume that F (x, y) = k, a constant. In this case, c1(y) must
satisfy the ODE

c′′1 − 10c1
L2

=
5k
L2
.

A general solution of this equation is

c1(y) = A cosh
√

10y
L

+B sinh
√

10y
L

− k

2
.

The first approximation is therefore

V1(x, y) =

[
A cosh

√
10y
L

+B sinh
√

10y
L

− k

2

]
x(L− x).

We associate boundary residuals with this approximation due to the fact that it
does not satisfy boundary conditions 15.44c,d,

R|y=0 =
(
A− k

2

)
x(L− x) − g(x),

R|y=L′ =

[
A cosh

√
10L′

L
+B sinh

√
10L′

L
− k

2

]
x(L− x) − h(x).

We apply Galerkin’s method to find A and B,

0 =
∫ L

0

[(
A− k

2

)
x(L− x) − g(x)

]
x(L− x) dx,

0 =
∫ L

0

{[
A cosh

√
10L′

L
+B sinh

√
10L′

L
− k

2

]
x(L− x) − h(x)

}
x(L− x) dx.

Integrations lead to

A =
k

2
+

30
L5

∫ L

0

g(x)x(L− x) dx,

B =
30
L5

csch
√

10L′

L

∫ L

0

h(x)x(L− x) dx− coth
√

10L′

L

[
k

2
+

30
L5

∫ L

0

g(x)x(L− x) dx

]
.

We can also reduce the dimensionality of the problem using eigenfunctions
ψn(x) = sin (nπx/L) as basis functions,

VN (x, y) =
N∑

n=1

cn(y) sin
nπx

L
.

The equation residual is
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R =
N∑

n=1

(
−n

2π2

L2

)
cn sin

iπx

L
+

N∑

n=1

c′′n sin
nπx

L
− F (x, y)

=
N∑

n=1

(
c′′n − n2π2

L2
cn

)
sin

nπx

L
− F (x, y).

Galerkin’s method requires

0 =
∫ L

0

[
N∑

n=1

(
c′′n − n2π2

L2
cn

)
sin

nπx

L
− F (x, y)

]
sin

mπx

L
dx,

and due to orthogonality of eigenfunctions, this reduces to

c′′m − m2π2

L2
cm =

2
L

∫ L

0

F (x, y) sin
mπx

L
dx.

When F (x, y) = k, a constant, integration gives

c′′m − m2π2

L2
cm =

2
L

∫ L

0

k sin
mπx

L
dx =

2k[1 + (−1)m+1]
mπ

.

A general solution of this ODE is

cm(y) = Am cosh
mπy

L
+ Bm sinh

mπy

L
− 2kL2[1 + (−1)m+1]

m3π3
,

and the N th approximation is

VN (x, y) =
N∑

n=1

[
An cosh

nπy

L
+ Bn sinh

nπy

L
− 2kL2[1 + (−1)n+1]

n3π3

]
sin

nπx

L
.

To evaluate An and Bn, we form boundary residuals along y = 0 and y = L′,

R|y=0 =
N∑

n=1

[
An − 2kL2[1 + (−1)n+1]

n3π3

]
sin

nπx

L
− g(x),

R|y=L′ =
N∑

n=1

[
An cosh

nπL′

L
+ Bn sinh

nπL′

L
− 2kL2[1 + (−1)n+1]

n3π3

]
sin

nπx

L
− h(x).

Application of Galerkin’s method gives

0 =
∫ L

0

{
N∑

n=1

[
An − 2kL2[1 + (−1)n+1]

n3π3

]
sin

nπx

L
− g(x)

}
sin

mπx

L
dx,

0 =
∫ L

0

{
N∑

n=1

[
An cosh

nπL′

L
+Bn sinh

nπL′

L
− 2kL2[1 + (−1)n+1]

n3π3

]
sin

nπx

L
− h(x)

}
sin

mπx

L
dx.

These give
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Am =
2kL2[1 + (−1)m+1]

m3π3
+

2
L

∫ L

0

g(x) sin
mπx

L
dx,

Bm = csch
mπL′

L

{
cosh

mπL′

L

[
−2kL2[1 + (−1)m+1]

m3π3
− 2
L

∫ L

0

g(x) sin
mπx

L
dx

]

+
2kL2[1 + (−1)m+1]

m3π3
+

2
L

∫ L

0

h(x) sin
mπx

L
dx.

This is the N th partial sum of the analytic solution obtained by separation of vari-
ables.

The next example cannot be solved with separation of variables; one edge of
the region under consideration is not a coordinate curve.

Example 15.4 Use Galerkin’s method to find a first approximation to the solution to the following
problem involving Poisson’s equation on the triangle R in Figure 15.2,

∂2V

∂x2
+
∂2V

∂y2
= F (x, y), (x, y) in R, (15.50a)

V (0, y) = 0, 0 < y < L, (15.50b)
V (x, 0) = 0, 0 < x < L, (15.50c)
V (x, y) = 0, (x, y) on x+ y = L. (15.50d)

Simplify the approximation when F (x, y) = k, a constant.

Solution Since boundary conditions are
homogeneous, we take approximations in
the form

VN (x, y) =
N∑

n=1

N∑

m=1

cnmφnm(x, y),

where basis functions φnm(x, y) must be
linearly independent and from a complete

y

x

x y L+ =

L

L

set of functions, and satisfy the boundary Figure 15.2
conditions. With ω(x, y) = xy(L− x− y),
one possible choice is φnm(x, y) = xnym(L− x− y), in which case

VN (x, y) =
N∑

n=1

N∑

m=1

cnmx
nym(L− x− y).

The first approximation is

V1(x, y) = c11xy(L− x− y),

with (equation) residual

R = −2c11(x+ y) − F (x, y).

Galerkin’s method requires

0 =
∫ L

0

∫ L−x

0

[−2c11(x+ y) − F (x, y)]xy(L− x− y) dy dx.
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Integrations lead to

c11 = − 90
L6

∫ L

0

∫ L−x

0

F (x, y)xy(L− x− y) dy dx.

In the special case that F (x, y) = k, a constant, we obtain c11 = −3k/(4L), and the
first approximation is

V1(x, y) = − 3k
4L

xy(L− x− y).•

In the event that any of the boundary conditions in this example are nonho-
mogeneous, calculations become more intensive. See Exercise 8 for the case when
the nonhomogeneity is along the hypotenuse of the triangle.

EXERCISES 15.5

1. In this exercise we discuss a number of possible ways to approximate the solution to the boundary
value problem

∂2U

∂x2
+
∂2U

∂y2
= 0, 0 < x < L, 0 < y < L′,

U(0, y) = U(L, y) = 0, 0 < y < L′,

U(x, 0) = x(L− x), 0 < x < L,

U(x,L′) = 0, 0 < x < L.

(a) Since the function φ0(x, y) = x(L− x)(1− y/L′) satisfies all four boundary conditions, and
the functions φn(x, y) = xnym(L− x)(L′ − y), n,m = 1, 2, . . . satisfy homogeneous versions
of the boundary conditions, we could take as a first approximation

U1(x, y) = x(L− x)
(
1 − y

L′

)
+ cxy(L− x)(L′ − y).

Use Galerkin’s method to determine c.
(b) Since the function x(L− x) satisfies the first three boundary conditions, we could use

reduction of dimensionality with U1(x, y) = c(y)x(L− x). Use Galerkin’s method to deter-
mine c(y).

(c) The functions sin (nπx/L) satisfy the first two boundary conditions so that we could take
approximations in the form

UN (x, y) =
N∑

n=1

cn(y) sin
nπx

L
.

Use Galerkin’s method to determine the cn(y). Are approximations partial sums of the
analytic solution obtained by separation of variables?

2. The approximation in part (a) of Exercise 1 was available because of the form of the boundary
condition along y = 0. In addition, this made the calculations in part (b) simpler than they
might otherwise be. In this exercise, we replace this boundary condition with U(x, 0) = f(x),
0 < x < L.
(a) Since the function x(L− x) satisfies the first two boundary conditions, we could take a

first approximation of the form U1(x, y) = c(y)x(L− x). Use reduction of dimensionality
and Galerkin’s method to find c(y). Compare the procedure to that in part (b) of Exercise
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1.
(b) Show that approximations of the form in part (c) of Exercise 1 are once again partial

sums of the analytic solution obtained by separation of variables.

3. Repeat parts (a) and (b) of Exercise 2 if the boundary condition along y = L′ is also nonhomo-
geneous, U(x,L′) = g(x), 0 < x < L.

4. (a) Could the square in Example 15.2 be divided into two triangles, one above the line y = x
and the other below the line, for the subdomain method? Explain.

(b) Divide the square into two triangles one above the line x+ y = L and one below for the
subdomain method. What does the resulting approximation predict for V2(0, 0)?

5. (a) Pursue approximation 15.48 of problem 15.44 in the case that all boundary conditions are
homogeneous (g(x) = h(x) = 0).

(b) Confirm that it is the N th partial sum of the analytic solution as obtained by finite
Fourier transforms with respect to x and y (see Exercise 54 in Section 7.2).

6. The boundary value problem occurs

∂2V

∂x2
+ ε2

∂2V

∂y2
= −1, −L < x < L, −L < y < L,

V (−L, y) = V (L, y) = 0, −L < y < L,

V (x,−L) = V (x,L) = 0, −L < x < L,

where ε is a constant, occurs in fluid flow. With ω(x, y) = (L2 − x2)(L2 − y2), which vanishes
on the boundary of the square, a first polynomial approximation for V (x, y) is V1(x, y) =
c(L2 − x2)(L2 − y2). Use collocation and Galerkin’s method to find c.

7. Use reduction of order to find a first polynomial approximation to problem 15.44 when F (x, y) =
xy.

8. Find the first approximation to the solution of problem 15.50 when the boundary condition along
the hypotenuse of the triangle is V (x, y) = h(x, y) = h(x,L−x) = g(x), where g(0) = g(L) = 0.

9. The boundary value problem

∂2V

∂x2
+
∂2V

∂y2
= −2, −L < x < L, −L < y < L,

V (−L, y) = V (L, y) = 0, −L < y < L,

V (x,−L) = V (x,L) = 0, −L < x < L,

arises in the study of torsion for a square prismatic rod.
(a) With ω(x, y) = (L2 − x2)(L2 − y2), which vanishes on the boundary of the square, a first

polynomial approximation for V (x, y) is V1(x, y) = c(L2 − x2)(L2 − y2). Use Galerkin’s
method to find c.

(b) The solution V (x, y) must be an even function of x and y, and be symmetric in x and
y. Taking this into account, a second polynomial approximation would be V2(x, y) =
(L2 − x2)(L2 − y2)[c+ d(x2 + y2)]. Use Galerkin’s method to find c and d.

(c) Use reduction of dimensionality with V1(x) = f(x)(L2 − y2), where f(−L) = f(L) = 0 to
approximate the solution.
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(d) Use trigonometric basis functions cos
(2n− 1)πx

2L
cos

(2m− 1)πy
2L

, n,m = 1, 2, . . ., to find

approximations to V (x, y).
(e) An important integral in this application is

M =
∫ L

−L

∫ L

−L

V (x, y) dy dx.

To four decimal places, its value is 1.1248L4. We can use it to gauge the accuracy of
the various approximations. Calculate M for the approximations in parts (a), (b) and (c).

10. We use reduction of dimensionality to approximate solutions of the boundary value problem

∂2V

∂x2
+
∂2V

∂y2
= 0, 0 < x < L, y > 0,

V (0, y) = 0, y > 0,
V (L, y) = 0, y > 0,
V (x, 0) = x(L− x), 0 < x < L.

Because solutions of this problem must be symmetric about x = L/2, choose basis functions
ψn(x) = xn(L− x)n in

VN (x, y) =
N∑

n=1

cn(y)ψn(x).

Such approximations satisfy the homogeneous boundary conditions for arbitrary cn(y), and
satisfy the nonhomogeneous condition provided c1(0) = 1 and cn(0) = 0, n = 2, . . . , N . Find
the first approximation V1(x, y) = c1(y)x(L− x) using:
(a) collocation;
(b) the subdomain (or moment) method;
(c) Galerkin’s method.

11. Use Galerkin’s method to find the second approximation in Exercise 10.

12. Since the PDE in Exercise 10 is homogeneous, we might consider a boundary method by choosing

basis functions that satisfy the PDE, in particular, φn(x, y) = e−(2n−1)πy sin
(2n− 1)πx

L
. They

are also symmetric about x = L/2. Approximations are then

VN (x, y) =
N∑

n=1

cne
−(2n−1)πy sin

(2n− 1)πx
L

.

(a) Show that Galerkin’s method gives the partial sums of the analytic solution.
(b) Find the first approximation using collocation.
(c) Find the first approximation using the subdomain (or moment) method.

13. Because the nonhomogeneity in Exercise 10 corresponded to the first term in the approximations,
it was possible to incorporate the nonhomogeneity into boundary conditions for coefficients
cn(y). This may not always be the case. For instance, consider the same problem where
x(L− x) is replaced by an arbitrary function g(x) except that it satisfy g(0) = g(L) = 0. With
no symmetry about x = L/2, basis functions are chosen as ψn(x) = xn(L − x), n = 1, 2, . . .;
they satisfy the homogeneous boundary conditions (see Table 15.5). Use Galerkin’s method to
find:
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(a) the first approximation,
(b) the second approximation.

14. Show that when Galerkin’s method is used in Exercise 13, with basis functions chosen as eigen-
functions ψn(x) = sin (nπx/L) of the associated Sturm-Liouville system, approximations are
the partial sums of the analytic solution obtained by separation of variables.

15. Because the PDE in Exercise 13 is homogeneous, we might consider a boundary method by
choosing basis functions that satisfy the PDE, in particular, φn(x, y) = e−nπy sin (nπx/L).
Approximations are then

VN (x, y) =
N∑

n=1

cne
−nπy sin

nπx

L
.

(a) Show that Galerkin’s method gives the partial sums of the analytic solution.
(b) Find the first and second approximations using collocation.
(c) Find the first and second approximations using the subdomain method.
(d) Find the first and second approximations using the moment method.

16. In some developments of the MWR, it is suggested that nonhomogeneous boundary conditions
need never be considered; the nonhomogeneity can always be transformed into the PDE. In this
exercise we show that whether this is done or not, the same residual to which the MWR would
be applied is the same. The residual for problem 15.41 when approximations are taken in form
15.42 where φ0(x, y) satisfies the nonhomogeneous boundary condition, and the φn(x, y), n =
1, · · · , N , satisfy the homogeneous version of the boundary condition, is given in equation 15.43.
The nonhomogeneity can be removed from the boundary condition with the transformation
V (x, y) = U(x, y) − φ0(x, y), where again φ0(x, y) is a function satisfying the nonhomogeneous
boundary condition. With this transformation, problem 15.41 is replaced by

L(U) = F (x, y) − L(φi), (x, y) in R,
U(x, y) = 0, (x, y) on β(R).

Show that the residual for approximation UN (x, y) =
∑N

n=1 cnφn(x, y) is also that given in
equation 15.43.


