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§14.6 Two-dimensional Heat Equation

The homogeneous, two-dimensional heat conduction PDE in some region R of the
xy-plane is

∂U

∂t
= k

(
∂2U

∂x2
+

∂2U

∂y2

)
. (14.44)

Suppose that R is the square 0 ≤ x ≤ L, 0 ≤ y ≤ L, and we discretize this region
with a mesh using N equal subdivisions h = ∆x = ∆y = L/N in both the x
and y directions. With a time step s = ∆t, we discretize the region 0 < x < L,
0 < y < L, t > 0 in which equation 14.44 is to hold. If Un,m,p = U(xn, ym, tp)
denotes approximate valuess for U(x, y, t) at mesh points (xn, ym, tp), the classic
explicit partial difference equation corresponding to scheme 14.28 is

Un,m,p+1 = Un,m,p +
ks

h2

(
Un+1,m,p + Un,m+1,p − 4Un,m,p

+ Un−1,m,p + Un,m−1,p

)
, (14.45)

n = 1, . . . , N − 1, m = 1, . . . , N − 1, p = 0, . . .. It uses a forward difference in
time and central differences in x and y. To determine the stability of this pde, we
substitute En,m,p = eγpseiβ(nh+mh) = eγpseiβ(n+m)h,

eγ(p+1)seiβ(n+m)h = eγpseiβ(n+m)h +
ks

h2
{eγpseiβ(n+1+m)h + eγpseiβ(n+m+1)h

− 4eγpseiβ(n+m)h + eγpseiβ(n−1+m)h + eγpseiβ(n+m−1)h}.

When we divide by eγpseiβ(n+m)h, we obtain

eγs = 1 +
ks

h2
(eiβh + eiβh − 4 + e−iβh + e−iβh) = 1 +

4ks

h2
(cosβh − 1)

= 1 − 8ks

h2
sin2 βh

2
.

For Von Neumann stability, condition 14.32 requires
∣∣∣∣1 − 8ks

h2
sin2 βh

2

∣∣∣∣ ≤ 1.

This reduces to
4ks

h2
≤ 1

sin2 (βh/2)
.

This will be satisfied for all β, if

4ks

h2
≤ 1, or, ∆t ≤ (∆x)2

4k
. (14.46)

In other words, pde 14.45 is conditionally stable.

Dufort-Frankel Scheme

If we replace the forward time difference with a central difference, and Un,m,p

with the average (Un,m,p+1 + Un,m,p−1)/2, we obtain the Dufort-Frankel explicit
scheme
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Un,m,p+1 − Un,m,p−1

2s
=

k

h2

(
Un+1,m,p + Un,m+1,p − 2(Un,m,p+1 + Un,m,p−1)

+ Un−1,m,p + Un,m−1,p

)
,

or,
(

1 +
4ks

h2

)
Un,m,p+1 =

(
1 − 4ks

h2

)
Un,m,p−1 +

2ks

h2
(Un+1,m,p + Un−1,m,p)

+
2ks

h2
(Un,m+1,p + Un,m−1,p). (14.47)

It is unconditionally stable (Exercise 2). Because it uses values at three time levels,
it is necessary to find values at time t = s in order to initiate the scheme. These
can be obtained by the classic explicit scheme.

Backward Implicit Scheme

If central differences for second derivatives in the classic explicit scheme are
centred at (xn, ym, tp+1) instead of (xn, ym, tp), the result is the backward implicit
scheme

Un,m,p+1 = Un,m,p +
ks

h2
(Un+1,m,p+1 + Un,m+1,p+1 − 4Un,m,p+1 + Un−1,m,p+1 + Un,m−1,p+1) ,

or,
(

1 +
4ks

h2

)
Un,m,p+1 = Un,m,p +

ks

h2
(Un+1,m,p+1 + Un,m+1,p+1

+ Un−1,m,p+1 + Un,m−1,p+1). (14.48)

Like its one-dimensional counterpart, it is unconditionally stable (Exercise 3).

Crank-Nicolson Implicit Scheme

If central differences for second derivatives in the classic explicit scheme are replaced
by averages of central differences at time step tp and at time step tp+1, the result is
the Crank-Nicolson implicit scheme

Un,m,p+1 = Un,m,p +
ks

2h2

[
(Un+1,m,p + Un,m+1,p − 4Un,m,p + Un−1,m,p + Un,m−1,p)

+ (Un+1,m,p+1 + Un,m+1,p+1 − 4Un,m,p+1 + Un−1,m,p+1 + Un,m−1,p+1)
]
.

Rearrangement gives

2
(

1 +
2ks

h2

)
Un,m,p+1 −

ks

h2
(Un+1,m,p+1 + Un,m+1,p+1 + Un−1,m,p+1 + Un,m−1,p+1)

= 2
(

1 − 2ks

h2

)
Un,m,p +

ks

h2
(Un+1,m,p + Un,m+1,p + Un−1,m,p + Un,m−1,p). (14.49)

It is also unconditionally stable (Exercise 4).
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Irregular Shaped Regions

Finite differences, and even more so finite elements, show their indispensability
when PDEs are to be considered on regions whose boundaries are not coordinate
curves (in the plane) and coordinate surfaces (in space). For example, suppose PDE
14.44 is to describe heat flow in the elliptical plate of Figure 14.10. None of our
analytic techniques are applicable to this problem. Finite differences can be adapted
to irregular boundaries, with some difficulties, but the difficulties have more to do
with computer implementation than with the theoretical aspects of the adaptation.
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When the region is a rectangle (Figure 14.11), a central difference for the Laplacian
at node 0 closest to boundary x = L utilizes the boundary data at node 5. When
the boundary is curved (Figure 14.12), a discretization of the region with the usual
array of points results in very few mesh points on the boundary of the region.
A central difference at 0 has node 5 (and node 6) outside the region. We need to
replace the “central” difference formula for the Laplacian at node 0 with a difference
formula that utilizes boundary data at nodes 1 and 2 in place of nodes 5 and 6.
More generally, we need a difference formula that accommodates two horizontal and
two vertical nodes at differing distances from node 0. We have shown this in Figure
14.13 where all four surrounding nodes are at different distances from node 0.
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Suppose we denote the values of the function U(x, y) at the five nodes by U(0), . . .,
U(4). We seek an approximation to the Laplacian of U(x, y) at node 0 as a linear
combination of U(0), . . . , U(4),

(Uxx + Uyy)|node 0 =
4∑

i=0

αiU(i). (14.50)

To find suitable constants αi, we represent U(x, y) at nodes 1, 2, 3, and 4 in Taylor
series at node 0. If we extend the notation U(i), to include derivatives, such as
Ux(0), then
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U(1) = U(0) + Ux(0)h1 +
1
2
Uxx(0)h2

1 +
1
3!

Uxxx(0)h3
1 + · · · ,

U(2) = U(0) + Uy(0)h2 +
1
2
Uyy(0)h2

2 +
1
3!

Uyyy(0)h3
2 + · · · ,

U(3) = U(0)− Ux(0)h3 +
1
2
Uxx(0)h2

3 −
1
3!

Uxxx(0)h3
3 + · · · ,

U(4) = U(0)− Uy(0)h4 +
1
2
Uyy(0)h2

4 −
1
3!

Uyyy(0)h3
4 + · · · .

When we substitute these into equation 14.50, and gather like terms, the result is

(Uxx + Uyy)node 0 = (α0 + α1 + α2 + α3 + α4)U(0) + (α1h1 − α3h3)Ux(0) + (α2h2 − α4h4)Uy(0)

+
1
2
(α1h

2
1 + α3h

2
3)Uxx(0) +

1
2
(α2h

2
2 + α4h

2
4)Uyy(0) + · · · .

For the the right side to agree with the left, we require

α0 + α1 + α2 + α3 + α4 = 0,

α1h1 − α3h3 = 0,

α2h2 − α4h4 = 0,

α1h
2
1 + α3h

2
3 = 2,

α2h
2
2 + α4h

2
4 = 2.

The solution of these equations is

α0 = −2
(

1
h1h3

+
1

h2h4

)
, α1 =

2
h1(h1 + h3)

, α2 =
2

h2(h2 + h4)
,

α3 =
2

h3(h1 + h3)
, α4 =

2
h4(h2 + h4)

.

Thus, a difference formula for the Laplacian of U(x, y) at node 0 in Figure 14.13 in
terms of values of the function at the five nodes is

(Uxx + Uyy)|node 0 = −2
(

1
h1h3

+
1

h2h4

)
U(0) +

2U(1)
h1(h1 + h3)

+
2U(2)

h2(h2 + h4)

+
2U(3)

h3(h1 + h3)
+

2U(4)
h4(h2 + h4)

. (14.51)

The reader can perhaps appreciate that the computer implementation of this for-
mula at each node of the region of Figure 14.44, wherein it is required, could be a
programming nightmare.

EXERCISES 14.6

1. Generalize pde 14.45 to a rectangle 0 ≤ x ≤ L, 0 ≤ y ≤ L′. What is the stability condition
replacing inequality 14.46?

2. Verify that the Dufort-Frankel scheme 14.47 is stable.
3. Verify that the backward implicit scheme 14.48 is stable.
4. Verify that the Crank-Nicolson scheme 14.49 is stable.


