Math 1010 Assignment 1 Solutions Summer 2014

1. (a)

$$
\begin{aligned}
12\left(\frac{2 x}{3}\right)+(12) 3(x-1) & =(12) \frac{5(1-2 x)}{4}+12(2 x) \\
8 x+36(x-1) & =15(1-2 x)+24 x \\
8 x+36 x-36 & =15-30 x+24 x \\
44 x+6 x & =15+36 \\
50 x & =51 \\
x & =\frac{51}{50}
\end{aligned}
$$

(b)

$$
\begin{aligned}
4(x-1)+3 x & =7 x+24 \\
4 x-4+3 x & =7 x+24 \\
7 x-7 x & =24+4 \\
0 & =28
\end{aligned}
$$

The equation has no solutions.
(c)

$$
\begin{aligned}
2(1-4 y)+3 y+2 & =-5 y+4 \\
2-8 y+3 y+2 & =-5 y+4 \\
-5 y+5 y & =4-4 \\
0 & =0
\end{aligned}
$$

All real numbers satisfy the equation.
2. (a)

$$
\begin{aligned}
6\left(\frac{5 x}{2}\right)+(6) 2(3+x) & \geq(6) \frac{4(x-5)}{3} \\
15 x+12(3+x) & \geq 8(x-5) \\
15 x+36+12 x & \geq 8 x-40 \\
27 x-8 x & \geq-40-36 \\
19 x & \geq-76 \\
x & \geq-\frac{76}{19} \\
x & \geq-4
\end{aligned}
$$

(b)

$$
\begin{aligned}
3(x-5)-x+10 & \geq 2 x+6 \\
3 x-15-x+10 & \geq 2 x+6 \\
2 x-2 x & \geq 6+5 \\
0 & \geq 11
\end{aligned}
$$

The inequality has no solutions.
(c)

$$
\begin{aligned}
10 y+3(4-2 y) & <2 y+2(y+15) \\
10 y+12-6 y & <2 y+2 y+30 \\
4 y-4 y & <30-12 \\
0 & <18
\end{aligned}
$$

All real numbers satisfy the inequality.
3. (a) Because of the term $2 y^{2}$, this equation does not represent a straight line.
(b) Because the square root is above the x, this equation does not represent a straight line.
(c) This is a straight line. It is shown in the left figure below.

(d) This is the equation of a straight line. To draw it, we rewrite the equation in the form

$$
3(1-5 x)=3(2)+3\left(\frac{x}{3}\right) \quad \Longrightarrow \quad 3-15 x=6+x \quad \Longrightarrow \quad-16 x=3 \quad \Longrightarrow \quad x=-\frac{3}{16} .
$$

It is shown in the right figure above.
4. When we write the equation of the given line in the form $y=\frac{5}{6} x+\frac{777}{6}$, we see that its slope is the $5 / 6$. The slope of the required line is therefore $-6 / 5$. Its equation is

$$
\begin{aligned}
y+3 & =-\frac{6}{5}(x-2) \\
5(y+3) & =-6(x-2) \\
5 y+15 & -6 x+12 \\
6 x+5 y & =-3
\end{aligned}
$$

5. When we write the equation of the given line in the form $y=-\frac{3}{2} x-36$, we see that its slope is the $-3 / 2$. The slope of the required line is therefore $-3 / 2$ also. To find the point of interesection of the lines $6 x-4 y=-11$ and $x=2 y$, we substitute $x=2 y$ in the first equation

$$
6(2 y)-4 y=-11 \quad \Longrightarrow \quad 12 y-4 y=-11 \quad \Longrightarrow \quad 8 y=-11 \quad \Longrightarrow \quad y=-\frac{11}{8}
$$

This gives $x=-11 / 4$. The point of intersection is therefore $(-11 / 4,-11 / 8)$. The equation of the required line is therefore

$$
\begin{aligned}
y+\frac{11}{8} & =-\frac{3}{2}\left(x+\frac{11}{4}\right) \\
8(y)+8\left(\frac{11}{8}\right) & =8\left[-\frac{3}{2}\left(x+\frac{11}{4}\right)\right] \\
8 y+11 & =-12\left(x+\frac{11}{4}\right)
\end{aligned}
$$

$$
\begin{aligned}
8 y+11 & =-12 x-33 \\
12 x+8 y & =-44 \\
3 x+2 y & =-11
\end{aligned}
$$

6. The feasible set is shown below.

