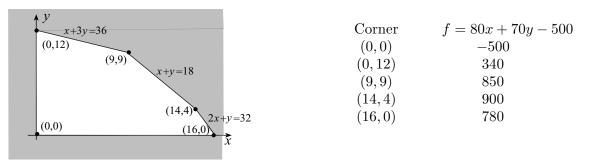
MATH 1010 Assignment 2 Solutions

1. If the company sells x compact disc players per year, its revenue is 50x. The yearly cost for manufacturing the x players is 900,000 + 35x. Thus, the profit is

$$P(x) = 50x - (900,000 + 35x) = 15x - 900,000.$$

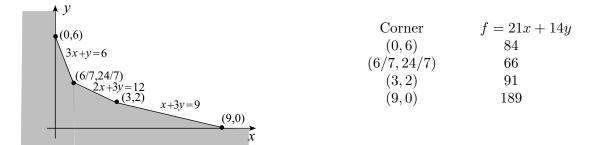
The company breaks even when profit is zero,


$$15x - 900,000 = 0$$
$$x = \frac{900,000}{15} = 60,000.$$

Hence, the company must sell at least 60,000 compact disc players to make a profit.

2. An equivalent system of constraints is

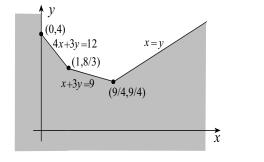
$$2x + y \le 32$$
, $y + x \le 18$, $x + 3y \le 36$, $y \ge 0$, $x \ge 0$.


The feasible set is shown in the figure below. From the table, we conclude that the largest value of f is 900.

3. An equivalent system of constraints is

$$2x + 3y \ge 12$$
, $3x + y \ge 6$, $x + 3y \ge 9$, $x \ge 0$, $y \ge 0$.

The feasible set is shown in the figure below. From the table, we conclude that the smallest value of f is 66.


4. Let x be the number of hours that she jogs (per week) and y be the number of hours that she cycles.

	Jogging	Cycling	Minimum
Number of hours/week	x	y	
Aerobic points/hour	12	9	36
Speed (mpr)	6	18	54 miles

The objective function is to minimze f = x + y. Constraints on the variables are:

$12x + 9y \ge 36,$	$4x + 3y \ge 12,$
$6x + 18y \ge 54,$	$x + 3y \ge 9,$
$y \ge x,$	$y \ge x,$
$x \ge 0,$	$x \ge 0,$
$y \ge 0,$	$y \ge 0.$

The feasible set is shown below. The table indicates that she should jog for 1 hour and cycle for 2 hours and 40 minutes.

Corner	f = x + y
(0, 4)	4
(1, 8/3)	11/3
(9/4, 9/4)	9/2