MATH 1210

Assignment 2 Fall 2018

1. Find all exponential representations for
(a) $(-\sqrt{3}-i)^{6}$
(b) $\frac{(1+i)^{14}(2+2 \sqrt{3} i)^{4}}{4^{6} i(1-i)}$
2. What is the remainder when $P(x)=(1-2 i) x^{3}+3 i x^{2}+4 x-2 i$ is divided by $2 x-1+3 i$?
3. Find h and k so that remainders are $1291 / 2$ and $123 / 16$ when $x^{4}+h x^{2}-x+k$ is divided by $x+5$ and $2 x-3$, respectively.
4. (a) Show that $x=-1+2 i$ is a zero of the polynomial

$$
P(x)=x^{4}+2 x^{3}+(5+i) x^{2}+2 i x+5 i
$$

(b) Factor $P(x)$ into linear factors.
5. In each part of this question: (i) use Descartes' rules of signs to state the number of possible positive and negative zeros of the polynomial; (ii) use the bounds theorem to find bounds for zeros of the polynomial; (iii) use the rational root theorem to list all possible rational zeros of the polynomial. Take the results of (i) and (ii) into account in (iii).
(a) $15 x^{8}-2 x^{4}+3 x-12$
(b) $24 x^{4}-13 x^{3}+2 x^{2}-5 x+21$
6. In each part of this question, use the procedure of Problem 5 to find all roots of the equation:
(a) $12 x^{4}+7 x^{3}+2 x^{2}+7 x-10=0$
(b) $x^{4}+2 x^{3}-41 x^{2}-42 x+360=0$
(c) $2 x^{6}-x^{5}+4 x-2=0$
(d) $x^{6}+x^{3}+1=0$
7. Prove that if a_{n} is greater than $2\left|a_{n-1}\right|, 2\left|a_{n-2}\right|, \ldots, 2\left|a_{0}\right|$, then every zero of the polynomial $P_{n}(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ must satisfy

$$
|x|<\frac{3}{2} .
$$

8. Prove that if $P(x)$ is a polynomial having only even powers of x, and $P(a)=0$, then $P(x)$ is divisible by $x^{2}-a^{2}$.
